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Abstract

The intent of this dissertation in computer science is to study topic models for text an-
alytics. The first objective of this dissertation is to incorporate auxiliary information
present in text corpora to improve topic modelling for natural language processing
(NLP) applications. The second objective of this dissertation is to extend existing
topic models to employ state-of-the-art nonparametric Bayesian techniques for better
modelling of text data. In particular, this dissertation focusses on:

• incorporating hashtags, mentions, emoticons, and target-opinion dependency
present in tweets, together with an external sentiment lexicon, to perform opin-
ion mining or sentiment analysis on products and services;

• leveraging abstracts, titles, authors, keywords, categorical labels, and the cita-
tion network to perform bibliographic analysis on research publications, using
a supervised or semi-supervised topic model; and

• employing the hierarchical Pitman-Yor process (HPYP) and the Gaussian pro-
cess (GP) to jointly model text, hashtags, authors, and the follower network in
tweets for corpora exploration and summarisation.

In addition, we provide a framework for implementing arbitrary HPYP topic models
to ease the development of our proposed topic models, made possible by modu-
larising the Pitman-Yor processes. Through extensive experiments and qualitative
assessment, we find that topic models fit better to the data as we utilise more auxil-
iary information and by employing the Bayesian nonparametric method.
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Chapter 1

Introduction

We live in the information age. With the Internet, information can be obtained easily
and almost instantly. This has changed the dynamic of information acquisition. For
example, we can now (1) attain knowledge by visiting digital libraries, (2) be aware
of the world by reading news online, (3) seek opinions from social media, and (4) en-
gage in political debates via web forums. As technology advances, more information
is created, to a point where it is infeasible for a person to digest all the available
content. To illustrate, in the context of PubMed, a healthcare database, the number
of entries has seen a growth rate of approximately 3,000 new entries per day in the
ten-year period from 2003 to 2013 [Suominen et al., 2014]. This motivates the use of
machines to automatically organise, filter, summarise, and analyse the available data
for the users. To this end, researchers have developed various methods, which can be
broadly categorised into computer vision [Low, 1991; Mai, 2010], speech recognition
[Rabiner and Juang, 1993; Jelinek, 1997], and natural language processing (NLP) [Man-
ning and Schütze, 1999; Jurafsky and Martin, 2000]. This dissertation focuses on text
analysis within NLP.

In text analytics, which is often associated with text mining, researchers seek to
accomplish various goals, including sentiment analysis (or opinion mining) [Pang and
Lee, 2008; Liu, 2012], topic modelling (or topic segmentation) [Blei, 2012], information
retrieval [Manning et al., 2008], and text summarisation [Lloret and Palomar, 2012]. To
illustrate, sentiment analysis can be used to extract digestible summaries or reviews
on products and services, which can be valuable to consumers. On the other hand,
topic models attempt to discover abstract topics that are present in a collection of text
documents. Note that text mining is often associated to the analysis of a large text
collection. Since we do not limit our work to only dealing with large text corpora, we
will say that this dissertation focusses on topic modelling rather than text mining.

Initially, topic models were developed for unstructured text. Topic models were
inspired by the latent semantic indexing (LSI) [Landauer et al., 2007] and its proba-
bilistic variant, probabilistic latent semantic indexing (pLSI), also known as probabilistic
latent semantic analysis (pLSA) [Hofmann, 1999]. Pioneered by Blei et al. [2003], the
latent Dirichlet allocation (LDA) is a fully Bayesian extension of the pLSI, and can be
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considered the simplest Bayesian topic model. The LDA is then extended to many
different types of topic models. Some of them are designed for specific applications
[Wei and Croft, 2006; Mei et al., 2007], some of them model the structure in the text
[Blei and Lafferty, 2006; Du, 2012], while some incorporate extra information in their
modelling [Ramage et al., 2009; Jin et al., 2011].

This dissertation will concentrate on topic models that take into account addi-
tional information. This information can be auxiliary data (or metadata) that accom-
pany the text, such as keywords (or tags), dates, authors, and sources; or external
resources like word lexicons. For example, on Twitter, a popular social media plat-
form, its messages, known as tweets, are often associated with several metadata like
location, time published, and the user who has written the tweet. This information
can also be used. For instance, Kinsella et al. [2011] model tweets with location data,
while Wang et al. [2011b] use hashtags for sentiment classification on tweets. On the
other hand, many topic models have been designed to perform bibliographic analy-
sis by using auxiliary information. Most notable of these is the author-topic model
[Rosen-Zvi et al., 2004], which, as its name suggests, incorporates authorship infor-
mation. In addition to authorship, the Citation Author Topic model [Tu et al., 2010]
and the Author Cite Topic Model [Kataria et al., 2011] make use of citations to model
research publications. There are also topic models that employ external resources to
improve modelling. For instance, He [2012] incorporates a sentiment lexicon as prior
information into the LDA for a weakly supervised sentiment analysis.

Considering theory, recent advances in Bayesian methods have produced topic
models that utilise nonparametric Bayesian priors. The most direct approach of these is
simply replacing Dirichlet distributions in the LDA by Dirichlet process (DP) [Ferguson,
1973], resulting in the hierarchical Dirichlet process LDA (HDP-LDA) proposed by
Teh et al. [2006]. One can further extend the topic models by using the Pitman-Yor
process (PYP) [Ishwaran and James, 2001] that generalises the DP, this includes Sato
and Nakagawa [2010], Du et al. [2012b], Lindsey et al. [2012], among others. Besides
more flexible modelling, other advantages of employing the nonparametric Bayesian
method on topic models is the ability to infer the number of clusters and to estimate
topic prior probabilities from the data. Using PYPs also allows the modelling of
power-law properties exhibited by natural languages [Goldwater et al., 2005].

This dissertation, in the field of computer science, aims to develop full nonpara-
metric Bayesian topic models that incorporate auxiliary information, with a goal of
producing more accurate models that work well in tackling several applications like
sentiment analysis and bibliographic study. As a by-product, we wish to encourage
the use of state-of-the-art Bayesian techniques in topic modelling, as well as encour-
age the incorporation of different kinds of auxiliary information. We note that this
dissertation is adapted and compiled from several publications and some unpub-
lished work. In the next section, we provide a list of references to the published and
submitted papers acquired throughout the doctoral studies.
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1.1 List of Published and Submitted Papers

The following papers are accepted for publication in peer reviewed conference pro-
ceedings and journal, listed in reverse chronological order:

1. Lim, K. W., Buntine, W. L., Chen, C., and Du, L. (2016). Nonparametric
Bayesian topic modelling with the hierarchical Pitman-Yor processes. Inter-
national Journal of Approximate Reasoning, 1(1):1–40.

2. Lee, Y., Lim, K. W., and Ong, C. S. (2016). Hawkes processes with stochastic
excitations. In Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of the
33rd International Conference on Machine Learning, ICML 2016, pages 79–88.

3. Lim, K. W. and Buntine, W. L. (2016). Bibliographic analysis on research pub-
lications using authors, categorical labels and the citation network. Machine
Learning, 103(2):185–213.

4. Lim, K. W. and Buntine, W. L. (2014). Bibliographic analysis with the Citation
Network Topic Model. In Phung, D. and Li, H., editors, Proceedings of the Sixth
Asian Conference on Machine Learning, ACML 2014, pages 142–158. Brookline,
Massachusetts, USA. Microtome Publishing.

5. Lim, K. W. and Buntine, W. L. (2014). Twitter Opinion Topic Model: Extracting
product opinions from tweets by leveraging hashtags and sentiment lexicon.
In Li, J., Wang, X. S., Garofalakis, M. N., Soboroff, I., Suel, T., and Wang, M.,
editors, Proceedings of the 23rd ACM International Conference on Conference on In-
formation and Knowledge Management, CIKM 2014, pages 1319–1328. New York
City, New York, USA. ACM.

6. Lim, K. W., Chen, C., and Buntine, W. L. (2013). Twitter-Network Topic Model:
A full Bayesian treatment for social network and text modeling. In Advances
in Neural Information Processing Systems: Topic Models Workshop, NIPS Workshop
2013, pages 1–5. Lake Tahoe, Nevada, USA.

7. Lim, K. W., Sanner, S., and Guo, S. (2012). On the mathematical relationship
between expected n-call@k and the relevance vs. diversity trade-off. In Hersh,
W. R., Callan, J., Maarek, Y., and Sanderson, M., editors, Proceedings of the 35th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2012, pages 1117–1118. New York City, New York, USA. ACM.

The following papers are currently under review:

1. Lim, K. W., Lee, Y., Hanlen, L., and Zhao, H. Simulation of multidimensional
Hawkes with dissimilar decays. Submitted to Asian Conference on Machine Learn-
ing, ACML 2016, pages 1–16.
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1.2 Major Contributions

We outline some major contributions of this dissertation:

1. Framework for Bayesian topic modelling: We present a modelling framework
for nonparametric Bayesian topic models that employ the hierarchical Pitman-
Yor processes (HPYPs). The novelty of this framework lies in the modularisa-
tion of the Pitman-Yor processes (PYPs), allowing us to implement HPYP topic
models that are of arbitrary structure. The framework is inspired by BUGS
(stands for Bayesian inference using Gibbs sampling) [Lunn et al., 2000], that
performs inference on arbitrary Bayesian models. However, BUGS does not
extend to nonparametric Bayesian models. Several other tools for automatic in-
ference, such as JAGS (stands for just another Gibbs sampler) [Plummer, 2003]
and Infer.NET [Minka et al., 2014], do not work for HPYP topic models.

The above framework has been successfully applied to implement several
topic models that will be discussed in this dissertation, like the HDP-LDA,1 a
nonparametric extension to the author-topic model (ATM), the proposed Twitter
Opinion Topic Model (TOTM), the Citation Network Topic Model (CNTM), and the
Twitter Network Topic Model (TNTM). Here we note that the network component
of the CNTM and the TNTM is simply implemented on top of the framework,
with little modification to the framework.

2. Opinion mining and sentiment analysis: We create a nonparametric Bayesian
topic model to perform opinion mining on tweets. The proposed model, TOTM,
leverages auxiliary metadata that are present in tweets, such as hashtags, men-
tions, emoticons, and strong sentiment words for sentiment analysis. As an
extension to the interdependent LDA (ILDA) [Moghaddam and Ester, 2011], the
TOTM models the target-opinion pairs that are extracted from tweets directly.
As such, the TOTM is able to discover target specific opinions, which is ne-
glected in existing approaches.

Another novelty of this work is a new formulation for incorporating senti-
ment prior information into topic models using existing public sentiment lexi-
con. Although there are some existing work [He, 2012; Ding et al., 2008; Taboada
et al., 2011] that uses sentiment lexicon for sentiment analysis, their approaches
tend to be ad hoc or rule-based in nature. In contrast, our formulation follows a
full Bayesian approach, and it learns and updates itself with the available data.

In addition, we illustrate the usefulness of the TOTM with several quali-
tative analysis and applications that cannot be obtained with other topic mod-
els. This includes (1) an opinion analysis of specific target words, which are
only made possible by modelling the target-opinion interaction directly, (2) an

1This includes the vanilla HDP-LDA and its bursty variant, as will be mentioned in Chapter 7.
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aspect-based opinion comparison of major brands, and (3) an extract of con-
trastive opinions on certain products. We note that this work is published in
Lim and Buntine [2014b].

3. Bibliographic analysis: Bibliographic analysis on research publications is al-
ways of interest to the research community. For this, we propose the CNTM
that models text, the corresponding publication metadata, as well as the associ-
ated citation network. Modelling the citation network with a topic model leads
to a complicated learning algorithm if we were to apply the standard Markov
chain Monte Carlo (MCMC) theory naïvely. Our contribution in this work, apart
from designing a full Bayesian topic model for bibliographic analysis, is that we
propose a novel and efficient learning algorithm for the CNTM. The proposed
algorithm introduces auxiliary parameters and uses the delta method approxi-
mation [Oehlert, 1992], to allow some parameters from the network component
to be assimilated into the topic model component. Hence, this leads to a sim-
pler learning algorithm for the full model.

Moreover, we propose a method to incorporate supervision into the CNTM.
This uses the categorical information that is available to the research publica-
tions. We demonstrate that incorporating supervision leads to improvement on
document clustering. For applications, we use the CNTM for (1) corpora ex-
ploration by extracting research topics, (2) analysis of authors’ research areas,
and (3) a visualisation of the author-topic network. The work on bibliographic
analysis is published in Lim and Buntine [2014a]. An extended version of this
work will be available in Lim and Buntine [2016].

4. Bayesian modelling on tweets: We propose a fully Bayesian nonparametric
topic model, named the TNTM, to jointly model the text content of tweets, their
hashtags, their authors, and the corresponding followers network. The novelty
in this work is that the TNTM utilises the HPYP to model the tweets, and the
Gaussian process (GP) to model the network. Albeit slightly complicated, the
TNTM is carefully designed to model tweets.2 Contrary to some existing topic
models that treat hashtags as labels (e.g., Tsai [2011]), we model the hashtags as
words that share tokens with text in the tweets. However, they are captured by
a different variable. The complexity of the learning algorithm comes from the
fact that each PYP in the model can have multiple parent PYPs and that the GP
is not a conjugate, thus we develop a sampler that deals with the PYPs in vector
form. The main contribution of this work is the holistic model for tweets.

Through experiments, we show that jointly modelling the text content and
the followers network leads to an improvement in model fitting, as compared
to individual modelling of the text content and the followers network. This

2Our ablation studies show that each part in the model is important.
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supports the argument that the more data the better. On the other hand, ap-
plying the TNTM for automatic topic labelling suggests that hashtags are also
good labels for topics. This work is published in Lim et al. [2013, 2016].

Besides the major contributions mentioned above, in Section 3.2.4, we derive the pos-
terior of a hierarchical Dirichlet model in which one of the intermediate Dirichlet
distribution is integrated out. We show that this is a mixture of Dirichlet-multinomial
distributions. The mixture is linked to the Chinese Restaurant Process (CRP) repre-
sentation when we introduce auxiliary variables that select one of the mixture. This
result is currently unpublished.

1.3 Dissertation Outline

This dissertation is outlined as follows. In Chapter 2, we briefly review the necessary
background for Bayesian modelling. In particular, we introduce the terminologies
and the basic concepts for Bayesian models. We then discuss some commonly used
algorithms for approximate Bayesian inference. We focus on the MCMC method that
will be used in this dissertation, the respective algorithms are the Metropolis-Hastings
(MH) algorithm and the Gibbs sampler.

In Chapter 3, we move on to describe the probability distributions and stochastic
processes that we will use in this dissertation. The univariate probability distribu-
tions that are mentioned are the Bernoulli distribution, the binomial distribution, and
the beta distribution. We discuss the conjugacy of the beta-binomial distribution. We
then detail the multivariate counterpart of the above mentioned distributions. Be-
sides, we also present a hierarchical Dirichlet model that serves as a simple analogue
to the HPYP used in the proposed topic models in later chapters. For stochastic
processes, we outline the DP and the PYP, which are the building blocks for the
following chapters.

Next, we discuss some commonly used Bayesian topic models in Chapter 4. The
simplest of these is LDA. LDA is often extended to more complicated models, a
nonparametric extension of LDA is the HDP-LDA. We also discuss topic models that
incorporate metadata in their model. Examples are the ATM, the tag-topic model,
and the supervised LDA. We also mention some notable and relevant topic models.

Chapter 5 details our topic modelling design and its implementation. We present
a generic HPYP topic model that will be extended later. We detail its generation
process, its model representation using the CRP metaphor, its posterior likelihood, and
the inference procedure. We then outline some standard evaluations for topic models.
The technical details on implementing the topic models are also presented. The
discussion on Chapter 5 will be referred extensively by the later chapters.

We introduce the TOTM in Chapter 6 for opinion mining on tweets. The TOTM
utilises hashtags, emoticons, and a sentiment lexicon for sentiment analysis. The
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TOTM is extended from the generic HPYP topic model and thus the outline in Chap-
ter 6 is similar to that of Chapter 5. In addition, we describe a procedure to incor-
porate sentiment lexicon as prior information into topic modelling, which leads to
improvement in sentiment classification. Moreover, we discuss the steps to perform
data cleaning and preprocessing, which are also relevant for Chapter 7 and 8. We
then perform experiments to assess the TOTM and present qualitative results that
are made possible with the TOTM. A diagnostic of the TOTM is also presented.

Chapter 7 and 8 follow the same structure as Chapter 6 so we outline the dif-
ference. In Chapter 7, we perform bibliographic analysis on research publications
with the proposed CNTM. The CNTM is also an extension of the above HPYP topic
model. The auxiliary information used by the CNTM includes authors, categories,
keywords, abstracts, titles, and the citation network. We propose a novel inference al-
gorithm for the CNTM, which combines the network component and the topic model
component for efficient learning. Furthermore, we propose a method to incorporate
supervision into the CNTM. Experiments show improvement on quantitative evalu-
ations and sound qualitative results.

Finally, we propose the TNTM in Chapter 8. The TNTM models the authors,
hashtags, and the followers network alongside tweets. Note that rather as labels,
the hashtags are treated as words in the TNTM. As with the previous two models,
the TNTM is also extended from the HPYP topic model. To model the network, we
employ the use of the GP, which leads to a very flexible modelling of tweets. For
inference, we propose an MH algorithm to jointly learn the topic model and the
follower network. In the experiments, our ablation studies show that each compo-
nent of the TNTM is important. We also demonstrate the quality of the TNTM in
applications such as topic labelling and analysis of authors. Chapter 9 concludes.

1.4 A Note on Notation

Before moving to the next chapter, we discuss the notation philosophy used in this
dissertation. We first note that the variables in each chapter are self-contained, that
is, we do not carry on the definition of a variable to the next chapter unless explicitly
stated. However, we try to keep the meaning of the variables consistent throughout
this dissertation. For example, the α and β in this dissertation are hyperparameters,
even though they might not be the same across the chapters.

Next, we would like to point out that a lower case symbol can represent both
scalar and vector, it will be clear given the context. We use bold face capital letters
to denote the set of all relevant lower case variables, for instance, A = {a1 , . . . , aK},
and each ai = (ai1 , . . . , aiN).
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Chapter 2

Bayesian Analysis

We first review the necessary background that is relevant to this dissertation. This
chapter focuses on the basics of the Bayesian method and we introduce the termi-
nologies used later in this dissertation in Section 2.1. Then, in Section 2.2, we present
some approximation techniques for Bayesian inference. We will particularly focus on
the Markov chain Monte Carlo (MCMC) method as they are employed in this dis-
sertation. Examples of the MCMC techniques include the Metropolis-Hastings (MH)
algorithm and the Gibbs sampler.

2.1 Bayesian Modelling

A classical (frequentist) statistical model treats its parameters as unknown constants.
These parameters need to be estimated by estimators that are usually obtained from
techniques such as maximum likelihood estimation and method of moments match-
ing.3 An estimator is also a statistic, that is, it is a function of the observed data.

In contrast, a Bayesian model regards its unknown parameters as random variables,
each of them having a prior distribution of its own. Inference on these parameters
are based on their posterior distributions obtained via the Bayes’ rule, conditional on
the observed data.

An advantage of Bayesian inference over the classical approach is that we can in-
corporate our prior knowledge of the parameters into the model, whether the priors
are from our own strong beliefs or based on previous experiences. Even when no
prior information is available, we can let the priors to be “uninformative” or “vague”,
and let the data influence the posterior distributions.

This chapter serves as a refresher on important aspects in Bayesian analysis that
are relevant to this dissertation. It is assumed that readers understand the basics
of Bayesian methods hence the following discussion will be brief and concise. A

3The maximum likelihood estimators refers to the parameter values that maximise the model like-
lihood (or log likelihood), while the estimators from the moments matching method are obtained by
matching the theoretical moments with the moment from the data.

9
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comprehensive review of Bayesian approach can be found in the introductory text
Bayesian Data Analysis by Gelman et al. [2013] and Bayesian Theory by Bernardo and
Smith [1994].

2.1.1 A Simple Model

This dissertation introduces various Bayesian terminologies and concepts by way of
a simple Bayesian model, given below:

(y | a, b) ∼ p(y | a, b) , (2.1)

(a | b) ∼ p(a | b) , (2.2)

b ∼ p(b) , (2.3)

where a, b and y are the random variables of the model, the notation (y | a, b) ∼
p(y | a, b) means the value of y follows a probability distribution p(y | a, b) given a and b.

2.1.2 Priors and Posteriors

In this Bayesian model, a and b are unknown parameters, each having a prior distri-
bution; whereas y corresponds to an observable variable. Using the Bayes’ rule, the
joint posterior density of a and b can be written as

p(a, b | y) = p(y | a, b)p(a, b)
p(y)

, (2.4)

where p(y) =
∫∫

p(y | a, b)p(a, b) da db is the marginal probability distribution of y, and
p(a, b) = p(a | b)p(b) is the joint probability distribution of a and b.

It is more common to write the joint posterior density up to a proportionality,

p(a, b | y) ∝ p(y | a, b)p(a, b) . (2.5)

This is because p(y) is often hard to compute (due to the integration) and does
not depend on the parameters a and b. Writing the joint posterior density in this
proportionality formula allows us to avoid evaluating p(y), but we are still able to
analyse the posterior (e.g., using the MCMC method, see Subsection 2.2).

If there is only one parameter of interest to be analysed, we can integrate out the
other nuisance parameters to obtain the marginal posterior density. In this case, the
marginal posterior densities for parameters a and b are

p(a | y) =
∫

p(a, b | y)db , p(b | y) =
∫

p(a, b | y)da . (2.6)
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2.1.3 Posterior Inferences

Unlike classical statistics, where inference on the unknown parameters are sum-
marised into a single number and its confidence interval, the Bayesian approach
enables us to analyse the distributions of the unknown parameters, that is, through
the posterior distributions. Nevertheless, it is very useful to look at the key statistics
of the posterior distributions, just like the classical approach.

The quantities of interest are posterior mean, median and mode, which are read-
ily attainable from the posterior distributions. For confidence interval, a Bayesian
equivalent would be the central posterior density region or the highest posterior density
region, for details, see Jaynes and Kempthorne [1976].

In this example, assuming we have seen n values of y, namely Y = (y1, . . . , yn),
the joint posterior distribution can be derived as

p(a, b |Y) = p(Y | a, b) p(a, b)
p(Y)

∝ p(Y | a, b) p(a, b) = p(a, b)
n

∏
i=1

p(yi | a, b) . (2.7)

Here, we have used the fact that the observed variable y is independent and
identically distributed (conditioned on the model parameters a and b). Having the
joint posterior, the relevant marginal posterior distributions can then be derived in
the usual way.

2.1.4 Predictive Inferences

In addition to obtaining inferences on the model parameters, an important use of
Bayesian method is to perform prediction on future data, which is given more em-
phasis in practice. Performing predictive inference involves deriving the posterior
distribution of the future values, conditioning on the observed data. Such a distribu-
tion is named the posterior predictive distribution.

For instance, say, we are interested in predicting a future value of y, denoted as
ỹ; the posterior predictive distribution of ỹ is

p(ỹ |Y) =
∫∫

p(ỹ, a, b |Y)da db =
∫∫

p(ỹ | a, b) p(a, b |Y)da db , (2.8)

noting that ỹ is conditionally independent of the data Y, conditioned on parameters
a and b.

In principle, analysis of posterior distributions can be generalised to any quantity
of interest related to the parameters in the model. For instance, we can analyse the
posterior for any function of ỹ, which has specific meaning in real world application.
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2.2 Approximate Bayesian Inference

Performing Bayesian inference is essentially just analysing the marginal posterior
distributions of quantity of interest (parameters, future data, and their functions).
A standard approach involves deriving the posterior distributions using the Bayes’
rule and then calculating the statistics of the posterior distributions (such as mean,
variance, etc.). Often, deriving the marginal posterior distributions is extremely dif-
ficult, if not impossible, that is, there is no closed form solution for the posterior
(though using a conjugate prior helps to alleviate the difficulty); this calls for spe-
cial techniques to evaluate the posterior distributions, such as numerical integration,
however, these can be tedious and time consuming.

Alternatively, MCMC methods are proposed to avoid the need to derive the re-
quired marginal posterior distributions [Gelman et al., 2013]. MCMC methods allow
us to sample quantities of interest from the posterior distributions directly and the
relevant statistics can be computed from the samples. The merit of MCMC methods
comes from the ease of implementing such methods. However, at the expense of
longer computation time required to achieve good inference.

If a faster approximation is needed, variational Bayesian methods (or variational
inference) [Bishop, 2006] are the next best substitute for MCMC methods. Variational
methods can be seen as an extension of the expectation-maximisation (EM) algorithm
[Dempster et al., 1977], as they involve iterative updates of the parameters via E-steps
and M-steps. Despite the increase speed in obtaining the inference, the drawback
of using variational approaches is that deriving the needed equations requires great
amount of work if not impossible.

This section provides a brief review of MCMC methods as they will be primarily
used in the later chapters. Other methods are mentioned, but they are not the focus
in this dissertation.

2.2.1 Markov Chain Monte Carlo Methods

The heart of a MCMC method lies in constructing a Markov chain of parameters for
which their sampling distributions converge to the desired distributions (in this case
the posterior distributions). Hence these samples can be treated as if they are drawn
from the posterior distributions directly.

Most notable of the MCMC methods are the Metropolis-Hastings (MH) algo-
rithms (also known as generalised Metropolis algorithms) [Metropolis et al., 1953;
Hastings, 1970] and Gibbs samplers [Geman and Geman, 1984]. They are discussed
in Section 2.2.1.1 and Section 2.2.1.2.
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2.2.1.1 Metropolis-Hasting Algorithm

Metropolis-Hasting algorithm was first proposed by Metropolis et al. [1953] and sub-
sequently generalised by Hastings [1970]. The MH algorithm only requires that the
joint posterior distribution of the model parameters, up to a proportionality con-
stant, is known; note that the joint posterior distribution can be easily found using
the Bayes’ rule, which is proportional to the prior times likelihood.4

Let θ = (θ1, . . . , θk) represent a set of parameters having prior distributions given
by p(θ) and y = (y1, . . . , yn) denotes the observed data, assuming the following
simple Bayesian model:

(y | θ) ∼ p(y | θ) , (2.9)

(θ) ∼ p(θ) , (2.10)

then the joint posterior distribution is just

p(θ | y) ∝ p(y | θ)p(θ) . (2.11)

Here, we are interested in the marginal posterior distribution p(θi | y) and the
posterior predictive distribution p(ỹ | y) for future data ỹ, the distribution of inter-
est is known as the target distribution. In order to make inference on the quantities
of interest, the MH algorithm creates a sequence of random values whose distribu-
tions converge to the target distributions. The MH algorithm can be summarised
in Algorithm 2.1.

We note that the proposal distributions do not necessarily have to be dependent
on any variables in the model. Also note that to accept the candidate value in Step
3(c) in Algorithm 2.1, we would need to generate a uniform random number u be-
tween 0 and 1 and accept the candidate value if u < A′.

With a large sample size R, the distributions of the random samples of θ can be
said to converge in distribution to the marginal posterior distributions. To lessen
the effect of a potentially badly chosen starting values that might not represent the
samples of the posterior distributions, we remove first B sets of samples from the
inference, so that the remaining R − B samples are more appropriate in represent-
ing the posterior distributions. Here, B is named burn-in and we say the discarded
samples are burned, or burnt.

A drawback of the MH algorithm is that the random values are not truly in-
dependent, their correlation comes from the Markov chain method where the next
simulated value is obtained from its predecessor. To overcome this, only every other
t-th samples (e.g., t = 5) are used for the inference; this is called thinning. However,
thinning reduces the quality of the inference when the sample size becomes smaller,
or leads to a great increase in computational time in order to gather more samples.

4Likelihood here refers to the probability density function of the observed data.
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Algorithm 2.1 Metropolis-Hasting algorithm

1. Pick initial values for θ = (θ1, . . . , θk), denote it θ(0) =
(

θ
(0)
1 , . . . , θ

(0)
k

)
, which

will be the starting point for the Markov chain.

2. Define the proposal distributions (also known as the jumping distributions) for each
parameter, f (θ∗i |y, θ), i = 1, . . . , k, from which the next value for θi is sampled.
The proposal distribution is usually chosen such that it is easy to sample and
has roughly the same shape as the target distribution.

3. For r = 1, . . . , R:
For j = 1, . . . , k:

(a) Sample a candidate value, θ∗j from the proposal distribution specified in
Step 2 given the other values of θ:

f
(

θ∗j
∣∣∣ y, θ

(r)
1 , . . . , θ

(r)
j−1, θ

(r−1)
j , θ

(r−1)
j+1 , . . . , θ

(r−1)
k

)
.

(b) Calculate ratio of densities for θ∗j , defined as

A =
p
(

θ
(r)
1 , . . . , θ

(r)
j−1, θ∗j , θ

(r−1)
j+1 , . . . , θ

(r−1)
k

∣∣∣ y
)

p
(

θ
(r)
1 , . . . , θ

(r)
j−1, θ

(r−1)
j , θ

(r−1)
j+1 , . . . , θ

(r−1)
k

∣∣∣ y
)

×
f
(

θ
(r−1)
j

∣∣∣ y, θ
(r)
1 , . . . , θ

(r)
j−1, θ∗j , θ

(r−1)
j+1 , . . . , θ

(r−1)
k

)
f
(

θ∗j

∣∣∣ y, θ
(r)
1 , . . . , θ

(r)
j−1, θ

(r−1)
j , θ

(r−1)
j+1 , . . . , θ

(r−1)
k

) .

(c) Update the value of θ
(r)
j to θ∗j with acceptance probability A′ = min(A, 1).

If θ∗j is not accepted, then set θ
(r)
j = θ

(r−1)
j , that is, the next value for θj

retains the same value.

Note that to make inference on the future data ỹ, we simply generate a sample of ỹ
using the simulated parameters θ, the generated ỹ will be distributed approximately
from the posterior predictive distribution. This method also applies to any function
of the parameters or any random variable conditioned on the parameters.

2.2.1.2 Gibbs Sampling

Gibbs sampling is a special case of the MH algorithm, for which the proposal dis-
tributions take a particular form [Geman and Geman, 1984]. More specifically, the
proposal distribution of each parameter is a conditional posterior distribution, given
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the data and all other parameters (except itself):

f (θ∗i | y, θ) = p(θ∗i | y, θ−i) , (2.12)

where θ−i = (θ1, . . . , θi−1, θi+1, . . . , θk) is a set of all parameters except for θi .
With this specification of proposal distribution, the acceptance probabilities will

be equal to 1; denoting θ
(r−1)
−i =

(
θ
(r)
1 , . . . , θ

(r)
i−1, θ

(r−1)
i+1 , . . . , θ

(r−1)
k

)
, the acceptance

probability for candidate value θ∗i is derived as

A(θ∗i ) =
p
(

θ
(r)
1 , . . . , θt

i−1, θ∗i , θ
(r−1)
i+1 , . . . , θ

(r−1)
k

∣∣∣ y
)

p
(

θ
(r)
1 , . . . , θ

(r)
i−1, θ

(r−1)
i , θ

(r−1)
i+1 , . . . , θ

(r−1)
k

∣∣∣ y
)

×
p
(

θ
(r−1)
i

∣∣∣ y, θ
(r)
1 , . . . , θ

(r)
i−1, θ

(r−1)
i+1 , . . . , θ

(r−1)
k

)
p
(

θ∗i

∣∣∣ y, θ
(r)
1 , . . . , θ

(r)
i−1, θ

(r−1)
i+1 , . . . , θ

(r−1)
k

)
=

p
(

θ∗i
∣∣∣ y, θ

(r−1)
−i

)
p
(

θ
(r−1)
−i

∣∣∣ y
)

p
(

θ
(r−1)
i

∣∣∣ y, θ
(r−1)
−i

)
p
(

θ
(r−1)
−i

∣∣∣ y
) p

(
θ
(r−1)
i

∣∣∣ y, θ
(r−1)
−i

)
p
(

θ∗i

∣∣∣ y, θ
(r−1)
−i

)
= 1 . (2.13)

Hence under Gibbs sampling, all candidate values are accepted. The Gibbs sam-
pler is preferred to the MH algorithm because it produces no wastage (no candidate
value is rejected). However, sometimes a considerable amount of effort is needed
to derive the distribution of the conditional density and/or to sample from it. Thus
there may be a trade-off between efficiency and simplicity.

Note that it is not necessary for us to sample each parameter sequentially (as
described above), one can develops an algorithm that updates more than one param-
eter at once in each iteration; such MCMC samplers are called blocked Gibbs sampler
[Liu, 1994]. Also, in practice we are usually only interested in a certain subset of the
parameters and do not care about the others; in such cases we can derive a collapsed
Gibbs samplers [Liu, 1994] for which the nuisance parameters are integrated out, doing
this requires more effort in derivation but the sampler would be much more efficient.

2.2.2 Other Methods

Another popular methods for approximate Bayesian inference are the variational in-
ference [Bishop, 2006] and a stochastic version of the variational inference [Hoffman
et al., 2013]. The variational inference techniques approximate the posterior distribu-
tions with a tractable distribution family, usually of the Gaussian distributions, and
minimises the Kullback-Leibler divergence [Kullback and Leibler, 1951] to obtain
point estimates of the parameters. Although this approach is faster, it often suffers
from being stuck at the local optima. Derivation of its algorithm is also non-trivial.
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Other methods for approximate Bayesian inference includes Expectation Propa-
gation [Minka, 2001] and the expectation-maximisation (EM) algorithm [Dempster
et al., 1977]. These approaches will not be discussed in this dissertation and we refer
the interested readers to the references thereof.

2.3 Summary

This chapter reviews some basic of Bayesian methods, including how a Bayesian
model is constructed and the how to make inference on quantities of interest in the
model. Due to the difficulty to make inference on posterior analytically, which is
usually complex in practical situations, various approximation approaches were re-
viewed; emphasis was given in the discussion of Markov chain Monte Carlo methods
as these will be used primarily in this dissertation.

In the next chapter, we continue with the discussion on some important prob-
ability distributions and stochastic processes that are used in this dissertation. In
particular, we note that they are discussed in the framework of Bayesian modelling.



Chapter 3

Probability Distributions and
Stochastic Processes

This chapter provides a brief review on probability distributions and stochastic pro-
cesses. The following illustrated probability distributions and stochastic processes
are chosen on the basis of relevance to this dissertation; they are only a tiny portion
of all existing (and important) distributions, see Walck [2007] for a comprehensive
list of other important probability distributions. We first describe some simple prob-
ability distributions in Sections 3.1 and 3.2. Section 3.3 describes the nonparametric
approach in Bayesian methods and mentions some stochastic processes.

3.1 Univariate Probability Distributions

We first discuss the simple univariate probability distributions. These distributions
are characterised by the fact that they generate one variable at a time.

3.1.1 Bernoulli Distribution

The Bernoulli distribution can be considered as the simplest of all distributions. It is a
discrete distribution (i.e., the outcome takes on a fixed value) with only two outcomes:
0 and 1. A classical example having such distribution would be the number of heads
obtained from a single toss of a bent coin.

Let θ denote the probability of landing a head, and x denotes the number of heads
obtained, we say x follows a Bernoulli distribution with parameter θ, which can be
presented as follows:

(x | θ) ∼ Bernoulli(θ) . (3.1)

The probability density function5 associated with x is given by

p(x | θ) = θx(1− θ)1−x , x ∈ {0, 1}, θ ∈ [0, 1] . (3.2)
5It should be called the probability mass function in the case of a discrete probability distribution,

but for convenience, we call it a probability density function as in the continuous case.

17
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3.1.2 Binomial Distribution

The binomial distribution is a generalisation of the Bernoulli distribution with mul-
tiple trials. Following the above example, if we throw the same bent coin n times
and again denote x as the number of heads obtained, then x follows a binomial
distribution with parameter n and θ:

(x | n, θ) ∼ Binomial(n, θ) . (3.3)

As with the Bernoulli distribution, it is a discrete distribution, but now with
(n + 1) outcomes from n trials. The probability density for x is given as

p(x | n, θ) =

(
n
x

)
θx (1− θ)n−x , x ∈ {0, 1, . . . , n}, θ ∈ [0, 1] , (3.4)

where the notation (n
x) denotes the binomial coefficient, given as(

n
x

)
=

n!
x! (n− x)!

. (3.5)

3.1.3 Beta Distribution

In contrast to the Bernoulli and the binomial distribution, the beta distribution is
a continuous distribution (i.e., the outcome can be any real number) for which the
outcome can take values between 0 and 1 (inclusive). The beta distribution is usually
used as a prior distribution for the probability of an event. For example, we can
model the probability of getting a head from a coin toss, θ, by a beta distribution:

p(θ | a, b) =
1

B(a, b)
(θ)a−1(1− θ)b−1 , θ ∈ [0, 1], a > 0, b > 0 . (3.6)

Here, the parameters a and b are known as shape parameters, and B(·, ·) is called the
beta function, which serves as a normalisation constant. The beta function can also
be written as a product of gamma functions:

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

. (3.7)

Note that the beta distribution is a conjugate distribution of the binomial distribu-
tion (and also of the Bernoulli distribution). This means that the prior and posterior
distributions of θ will be of the same family of distributions, namely the beta family.
This convenient property also allows a tractable derivation of a compound distribution
named the beta-binomial distribution.
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3.1.4 Beta-Binomial Distribution

Consider the following Bayesian model:

(x | n, θ) ∼ Binomial(n, θ) , (3.8)

(θ | a, b) ∼ Beta(a, b) . (3.9)

where a and b are hyperparameters associated with prior θ. Note that the variables n,
a and b are known (or chosen to be certain values) in the model.

It is not difficult to show that the posterior of θ follows a beta distribution:

p(θ | x, n, a, b) ∝ p(x | n, θ) p(θ | a, b)

∝ θa+x−1(1− θ)b+n−x−1 , (3.10)

that is, (θ | x, n, a, b) ∼ Beta(a + x, b + n− x). Often times, we rewrite Equation (3.10)
as p(θ | x), implicitly conditioning on known variables (n, a and b) for simplicity and
ease of reading. This conjugacy also enables us to analytically derive the compound
distribution of x by integrating out the parameter θ:

p(x | n, a, b) =
∫ 1

0
p(x | n, θ) p(θ | a, b)dθ

=

(
n
x

)
1

B(a, b)

∫ 1

0
θa+x−1(1− θ)b+n−x−1 dθ

=

(
n
x

)
B(a + x, b + n− x)

B(a, b)
. (3.11)

This distribution is known as the beta-binomial distribution. Note that the integral
in Equation (3.11) is easily computed by recognising that it is part of the posterior
distribution of θ.

For situations where there is a priori ignorance regarding θ (i.e., we do not know
what a and b are), three specifications have been proposed: uniform prior (a = b = 1),
improper prior6 (a = b = 0) and Jeffreys prior (a = b = 1/2). Each of these has
its advantages and disadvantages. However, given large sample size (often true for
computer science application), the differences between using the three priors tend to
be negligible.

Note that the improper prior is not a proper probability distribution in which
the density does not sum up (or integrate) to 1. When one uses an improper prior,
care must be taken to ensure that the posterior distribution is proper, otherwise the
inference obtained is completely useless!

6Which is also known as the Haldane prior [Haldane, 1932].
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3.2 Multivariate Probability Distributions

Multivariate probability distributions are a generalisation of univariate probability
distributions discussed in Section 3.1. The outcomes from a multivariate distribution
spans multiple dimensions and their values are often dependent on one another.

As above, this subsection reviews some multivariate distributions that are rel-
evant to this dissertation. Again, we refer the readers to Walck [2007] for more
information on these distributions and details on the other distributions.

3.2.1 Multinomial Distribution

The multinomial distribution is a multivariate generalisation of the binomial distri-
bution. While each binomial trial relates to an event being success (1) or failure (0),
a trial in multinomial distribution results in a success in exactly one of k possible
outcomes. For example, rolling a die. A sample from a multinomial distribution
consists of the frequency of the successes in each outcome after n trials.

Instead of having a single parameter on probability of success (like θ in the bino-
mial distribution), the multinomial distribution requires parameters in the form of a
probability vector (length k), which comprises of the probability of getting a success
in each outcome. We denote this probability vector as θ = (θ1, . . . , θk).

Let x = (x1, . . . , xk) be a vector of frequencies correspond to successes in each
outcome after n rolls of a k-sided die (does not need to be a fair die) with the proba-
bility of success in each outcome (rolling 1 to k) defined by θ = (θ1, . . . , θk), then the
probability density function of x is

p(x | n, θ) =

(
n
x

)
(θ1)

x1 . . . (θk)
xk , xi ∈ {0, . . . , n}, θi ∈ [0, 1] . (3.12)

Note that the constraints ∑k
i=1 xi = n and ∑k

i=1 θi = 1 need to be satisfied.
The multinomial distribution is equivalent to the categorical distribution or sim-

ply the ‘discrete distribution’ when n is equal to 1, but the sample space is now one
of the possibility (out of k) rather than counts. On the other hand, the multinomial
distribution reduces to the binomial distribution when k = 2.

3.2.2 Dirichlet Distribution

The Dirichlet distribution is a multivariate generalisation of the beta distribution. As
with the beta distribution, the Dirichlet distribution is often used as a prior distri-
bution for a probability vector representing probabilities of mutually exclusive events,
such as the probability distribution of a die roll. The Dirichlet distribution is conju-
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gate to the multinomial distribution, exactly like the relationship between the beta
distribution and the binomial distribution.

The Dirichlet distribution is parameterised by a vector α = (α1, . . . , αk) of length
k, and has the following probability density function:

p(θ | α) = 1
Bk(α)

(θ1)
α1−1 . . . (θk)

αk−1 , θi ∈ [0, 1], αi > 0 , (3.13)

where ∑k
i=1 θi = 1; Bk(α) is a k-dimensional generalisation of the beta function that

normalises the distribution, defined as

Bk(α) =
Γ(α1) . . . Γ(αk)

Γ(α1 + · · ·+ αk)
. (3.14)

The Dirichlet distribution can also be parameterised by its mean µ and precision
ρ, where ρ = ∑k

i=1 αi and µ = α/ρ. This parameterisation is sometimes preferred
due to its greater interpretability. Like the multinomial distribution, the Dirichlet
distribution reduces to the beta distribution when k = 2.

3.2.3 Dirichlet-Multinomial Distribution

Due to the conjugacy of the Dirichlet distribution to the multinomial distribution,
a compound distribution named the Dirichlet-multinomial distribution can be con-
structed similarly to the construction of the beta-binomial distribution. Specifically,
the distribution arises from the following Bayesian model:

(x | n, θ) ∼ Multinomial(n, θ) , (3.15)

(θ | α) ∼ Dirichlet(α) . (3.16)

Again, we can show that the posterior of θ follows a Dirichlet distribution:

(θ|x, n, α) ∼ Dirichlet(α + x). (3.17)

The parameters α = (α1, . . . , αk) are also known as pseudocounts as they are added
to the observed outcomes. Note that the posterior is simply an empirical distribution
of the observed outcomes when an improper prior (where all αi = 0) is used.

The probability density function of Dirichlet-multinomial distribution — where
the Dirichlet parameter is integrated out — can be derived as

p(x | n, α) =
∫

p(x | n, θ) p(θ | α)dθ =

(
n
x

)
1

Bk(α)

∫
(θ1)

α1+x1−1 . . . (θk)
αk+xk−1 dθ

=

(
n
x

)
Bk(α + x)

Bk(α)
. (3.18)
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We note that if an array of discrete distributions of length n is used instead of the
multinomial distribution, that is, (zi | θ) ∼ Discrete(θ) for i = 1, . . . , n, then

p(z | n, α) =
Bk(α + x)

Bk(α)
. (3.19)

The (n
x) term is dropped since the sample space is now consist of all permutations of

z instead of counts.

3.2.4 Hierarchical Dirichlet Model

Consider the following hierarchical Bayesian model in which the prior for a Dirichlet
distribution is also Dirichlet distributed:

(x | n, θ) ∼ Multinomial(n, θ) , (3.20)

(θ | α) ∼ Dirichlet(cα) , (3.21)

(α | β) ∼ Dirichlet(β) . (3.22)

Here, c is an arbitrary positive constant and β is a positive (non-zero) vector.

From Equation (3.18), we know that the Dirichlet parameter θ can be integrated
out, but can we also integrate out the Dirichlet parameter α? Here we show that
all Dirichlet parameters in a hierarchical model can be integrated out via the follow-
ing derivation.

p(x | n, β) =
∫

p(x | n, α) p(α | β)dα

=

(
n
x

) ∫ Bk(cα + x)
Bk(cα)

1
Bk(β)

k

∏
i=1

(αi)
βi−1 dα . (3.23)

We can simplify the ratio of the beta functions using the fact that x is a vector of
integers, as follows:

Bk(cα + x)
Bk(cα)

=
∏k

i=1 Γ(cαi + xi)

Γ(∑k
i=1 cαi + xi)

Γ(∑k
i=1 cαi)

∏k
i=1 Γ(cαi)

=
Γ(c)

Γ(c + n)

k

∏
i=1

(αi)(αi + 1) · · · (αi + xi − 1)

=
Γ(c)

Γ(c + n)

k

∏
i=1

(
xi

∑
j=1

Sxi
j (αi)

j

)
, (3.24)

where the last line of Equation (3.24) is derived by expanding the inner products, here
Sb

a denotes the generalised Stirling Numbers of the first kind [Buntine and Hutter,
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2012, Theorem 17]. Replacing this formulation into Equation (3.23) gives

p(x | n, β) =

(
n
x

)
Γ(c)

Γ(c + n) ∑
t1,...,tk

(
k

∏
i=1

Sxi
ti

)
1

Bk(β)

∫ k

∏
i=1

(αi)
βi+tk−1 dα

=

(
n
x

)
Γ(c)

Γ(c + n) ∑
t1,...,tk

Bk(β + t)
Bk(β)

k

∏
i=1

Sxi
ti

. (3.25)

We note that ti is strictly positive when xi is non-zero, and the ti can take values from
1 to xi (inclusive).

From Equation (3.25), we can see that when the Dirichlet parameters are inte-
grated out more than once, the distribution corresponds to mixtures of Dirichlet-
multinomial distributions. For topic modelling, as we will discuss in later chapters,
we can introduce an auxiliary variables called table counts to avoid dealing with the
mixtures explicitly. The table counts can be viewed as indicators that select one of the
mixture in Equation (3.25). Note that this is consistent with the Chinese Restaurant
Process representation that will be discussed in Section 5.3.

Finally, this method can be applied recursively to a deeper hierarchical model
of Dirichlet distributions. This gives a more complicated mixtures of Dirichlet-
multinomial distributions.

3.3 Stochastic Processes and the Nonparametric Model

A stochastic process can be viewed as an extension of probability distribution, as it is a
collection of random variables each having a probability distribution (which is related
to one another). A stochastic process is usually used to represent the evolution of a
system (e.g., see Markov chain).

The term nonparametric model [Hjort et al., 2010] has two meanings, the first refers
to a model that contains no parameters at all, which assumes that data that are
observed do not follow a given probability distribution; while the second refers to a
model that does not assume a particular structure (i.e., fixed probability distribution),
the parameters in this model usually grow in size with the amount of data. In the
Bayesian context, the term nonparametric refers to the latter.

This section covers some nonparametric stochastic processes that are related to
this dissertation. A review on other stochastic processes is available in Çinlar [2011].

3.3.1 Dirichlet Process

The Dirichlet process (DP) is a stochastic process that can be thought of as an infinite-
dimensional generalisation of the Dirichlet distribution. Unlike simple probability
distributions, the DP is ‘parameterised’ by a probability distribution (named the base
distribution or base measure) and a positive real number (the concentration parameter).
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A sample from a DP is a probability distribution known as the output distribution. The
support of the output distribution is the same as the base distribution, meaning that
a sample drawn from the output distribution must also be possible to be drawn from
the base distribution. As with the Dirichlet distribution and beta distribution, the DP
is usually used as a prior in a hierarchical Bayesian model.

The DP is formally introduced by Ferguson [1973]. Formally, let H be a random
measure on measurable space (X ,B) and let β to be a positive real number. G is said
to be a DP on (X ,B) with a base measure H and a concentration parameter β if for
any measurable partition (A1, . . . , Ak) of X , the distribution of

(
G(A1), . . . , G(Ak)

)
is Dirichlet distributed with parameter

(
βH(A1), . . . , βH(Ak)

)
:

G ∼ DP(β, H) , (3.26)

then (
G(A1), . . . , G(Ak)

)
∼ Dirichlet

(
βH(A1), . . . , βH(Ak)

)
. (3.27)

From this definition, if H is a discrete probability distribution (over a finite space),
then the DP is a Dirichlet distribution:

DP(β, H) ≡ Dirichlet(βH) , (3.28)

where H = (h1, . . . , hk) representing a probability vector.
When H is non-discrete (non-atomic, or continuous), a DP is essentially an infinite-

dimensional Dirichlet distribution. To draw a sample from the DP, certain sam-
pling schemes have been proposed, such as the stick-breaking process [Sethuraman,
1991] and the Chinese restaurant process (CRP), which is also known as the Blackwell-
Macqueen urn scheme [Blackwell and MacQueen, 1973].

Note that a sample drawn from a DP is always discrete (this does not mean finite)
even when the base distribution is continuous. Since in most real world applications
a sample from a DP is finite given limited observations, we can treat a DP as a
Dirichlet distribution, though using a DP allows us to model an unconstrained (and
changeable) number of state space.

3.3.2 Pitman-Yor Process

The Pitman-Yor process (PYP) [Ishwaran and James, 2001] is also known as the two-
parameter Poisson-Dirichlet process. The PYP is a two-parameter generalisation of
the DP, now with an extra parameter α named the discount parameter in addition to
the concentration parameter β. Similar to DP, a sample from PYP corresponds to a
discrete distribution with the same support as its base distribution H. The underlying
distribution of PYP is the Poisson-Dirichlet distribution (PDD), which was introduced
by Pitman and Yor [1997].
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The PDD is defined by its construction process. For 0 ≤ α < 1 and β > −α, let Vk

be distributed independently as follows:

(Vk | α, β) ∼ Beta(1− α, β + kα) , for k = 1, 2, 3, . . . , (3.29)

and define (p1, p2, p3, . . . ) as

p1 = V1 , (3.30)

pk = Vk

k−1

∏
i=1

(1−Vi) , for k ≥ 2 . (3.31)

If we let p = ( p̃1, p̃2, p̃3, . . . ) be a sorted version of (p1, p2, p3, . . . ) in descending
order, then p is Poisson-Dirichlet distributed with parameter α and β:

p ∼ PDD(α, β) . (3.32)

Note that the unsorted version (p1, p2, p3, . . . ) follows a GEM(α, β) distribution,
which is named after Griffiths, Engen and McCloskey [Pitman, 2006].

With the PDD defined, we can then define the PYP formally. Let H be a distri-
bution over a measurable space (X ,B), for 0 ≤ α < 1 and β > −α, suppose that
p = (p1, p2, p3, . . . ) follows a PDD (or GEM) with parameters α and β, then PYP is
given by the formula

p(x | α, β, H) =
∞

∑
k=1

pk δXk(x) , for k = 1, 2, 3, . . . , (3.33)

where Xk are independent samples drawn from the base measure H and δXk(x) rep-
resents probability point mass concentrated at Xk (i.e., it is an indicator function that
is equal to 1 when x = Xk and 0 otherwise):

δx(y) =

{
1 if x = y
0 otherwise .

(3.34)

This construction is named the stick-breaking process. The PYP can also be con-
structed using an analogue to Chinese restaurant process (which explicitly draws a
sequence of samples from the base distribution). A more extensive review on the
PYP is given by Buntine and Hutter [2012].

For some applications such as natural language processing, a PYP is more suitable
than a DP as it exhibits a power-law behaviour (when α 6= 0), which is observed in
natural languages [Goldwater et al., 2005; Teh and Jordan, 2010]. Note that when the
discount parameter α is 0, the PYP simply reduces to a DP.
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3.3.3 Pitman-Yor Process with a Mixture Base

Note that the base measure H of a PYP is not necessarily restricted to a single prob-
ability distribution, we can let H be a mixture distribution such as

H = ρ1H1 + ρ2H2 + · · ·+ ρnHn , (3.35)

where ∑n
i=1 ρi = 1 and {H1, . . . Hn} is a set of distributions over the same measurable

space (X ,B) as H.
With this specification of H, the PYP is also named the compound Poisson-

Dirichlet process in Du [2012], or the doubly hierarchical Pitman-Yor process in Wood
and Teh [2009]. A special case of this is the DP equivalent, which is also known as
the DP with mixed random measures in Kim et al. [2012]. We note that in the CRP
representation, if the base distribution is a mixture of multiple PYP, we can treat the
PYP to have multiple parent restaurants. More on this in Chapter 5.

Note that in the above discussion we have assumed constant values for the ρi ,
though of course we can go fully Bayesian and assign a prior distribution for each of
them, a natural prior would be the Dirichlet distribution:

(ρ | γ) ∼ Dirichlet(γ) , (3.36)

where we defined ρ = (ρ1, . . . , ρn) and γ = (γ1, . . . , γn).

3.4 Summary

This chapter provides a brief review on some relevant and important probability dis-
tributions and their characteristics. In particular, we touch on the aspect of choosing
conjugate priors to simplify the corresponding posterior distributions. This also led
to the discussion on the Hierarchical Dirichlet Model in Section 3.2.4, which serves
as a bridge to the discussion of some related stochastic processes.

An application of these probability distributions and stochastic processes is in the
area of topic modelling. This will be reviewed in the next chapter.



Chapter 4

Topic Models

One example out of many successful Bayesian applications is topic modelling, which
is an algorithm that automatically discovers the latent (or hidden) structure of a cor-
pus of documents. Here, a document is not restricted to just text, it can be an image,
video or even genes (with genetic information); essentially, topic modelling can be
applied to any data that can be represented by a set of items/features [Blei et al., 2003;
Fergus et al., 2005; Zheng et al., 2006; Hospedales et al., 2012]. In this dissertation, we
discuss topic modelling in the context of text analysis.

“Topic modelling algorithms are statistical methods that analyse the words of the
original texts to discover the themes that run through them, how those themes are
connected to each other, and how they change over time” [Blei, 2012]. With topic
models, we are able to analyse and summarise electronic documents — which are
growing in size exponentially — quickly and automatically.

A topic is essentially a set of words grouped together by their co-occurrence and
other factors (this depends on the topic model). Although a topic does not have a
word or a title that describes itself, practitioners tend to represent a topic by the first
n most significant words. To overcome this manual task, the research community
has proposed several methods to label the topics autonomously. Recent attempts
on automatic topic labelling include the work of Lau et al. [2011], Mao et al. [2012],
Aletras and Stevenson [2014], and Cano Basave et al. [2014].

Topic modelling is being used in many domains such as text analysis and com-
puter vision. In text analysis, topic modelling has been used for document clustering,
topic exploration, sentiment analysis, text summarisation, document segmentation,
and information retrieval [Blei, 2012]. In computer vision, topic modelling is suc-
cessfully used in face recognition [Lu et al., 2003] and scene recognition [Fei-Fei and
Perona, 2005]. In this chapter, we discuss some popular topic models used in practice.

4.1 Latent Dirichlet Allocation

The Latent Dirichlet allocation (LDA) [Blei et al., 2003] is the simplest Bayesian topic
model; it is a fully Bayesian extension of the probabilistic latent semantic indexing (pLSI)
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Figure 4.1: Graphical model of the latent Dirichlet allocation (LDA). The shaded node
represents observed variable while the unshaded nodes represent latent variables.

[Hofmann, 1999]. The LDA can also be seen as a type of principal component analysis
for discrete data [Buntine, 2002].

The LDA is an admixture model — each word in a document is assigned to a
topic and hence a document is linked to multiple topics, rather than having only
a topic per document. The Bayesian model of the LDA is given by the following
generative process:

(θd | µ) ∼ Dirichlet(µ) , for d = 1, . . . , D , (4.1)

(φk | γ) ∼ Dirichlet(γ) , for k = 1, . . . , K , (4.2)

(zdn | θd) ∼ Discrete(θd) , (4.3)

(wdn | zdn, φ) ∼ Discrete(φzdn) , for n = 1, . . . , Nd . (4.4)

In the above, µ and γ are the parameters for priors θd and φk respectively,7 while zdn

is a topic index (i.e., a label for a particular topic, usually numbered) and wdn is a
word associated with document d and position n (the n-th word in the text sequence);
k is used to index the topics (out of K seen topics during sampling). Figure 4.1 shows
the graphical model for the LDA.

Under this model, our aim is to infer the latent variables θ and φ, which are
known as document–topic distribution and topic–word distribution respectively. Infer-
ence can be performed easily via the collapsed Gibbs sampling, in which the conju-
gacy between the distributions in the model allows a marginal posterior distribution
to be derived. The Gibbs sampling is performed on the latent variable z, with the
priors θ and φ being integrated out, even though the main interest is on them. This
is because θ and φ can be constructed rather easily once we have the sample z.

Due to the simplicity of the LDA and its ease of implementation, it has been used
widely in a variety of applications. It is also easily extended into a more compli-

7Here, the notation Dirichlet(a) represents the symmetric Dirichlet distribution with parameter
a = (a, a, . . . , a).
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cated model for complex problems. A straightforward extension of the LDA is the
hierarchical Dirichlet process LDA (HDP-LDA) [Teh et al., 2006], which is a Bayesian
nonparametric generalisation of the LDA. One advantage of nonparametric mod-
elling is that it allows us to overcome a limitation of the LDA, for which the number
of topics is a fix constant. The HDP-LDA relaxes this constraint and is able to learn
the number of topics directly from the data. We note that the HDP-LDA is a special
case of the hierarchical Pitman-Yor process LDA. We will revisit this in Chapter 5.

4.2 Topic Modelling with Metadata

Another extension to the LDA makes use of metadata, or auxiliary information that
accompanying a document, for instance, tweets (short document from Twitter) con-
tain additional information like authors, tags, and hyperlinks. This information is
often discarded and ignored in a vanilla topic model such as the LDA.

In the context of microblog, such as tweets, each document is limited to a certain
size8 and usually contains informal languages (deliberate misspellings, acronyms,
and abbreviations). Previous finding [Zhao et al., 2011] suggests that the LDA does
not work as well as other models that use metadata, as topics obtained from the
LDA are mostly incoherent and not interpretable. A natural treatment to this is
by aggregating these microblog documents together based on the authors to form
documents that are larger [Weng et al., 2010; Hong and Davison, 2010].

Instead of employing an ad-hoc approach in improving the LDA, a better solution
would be to design a topic model that is more suitable in modelling the documents.
Topic models that make use of metadata include author-topic model [Rosen-Zvi et al.,
2004], tag-topic model [Tsai, 2011], relational topic model [Chang and Blei, 2010], su-
pervised LDA [Mcauliffe and Blei, 2008], Twitter-LDA [Zhao and Jiang, 2011], Topic-
Link LDA [Liu et al., 2009], and others. These models are able to make additional
inference on documents, such as obtaining the word distributions correspond to cer-
tain authors or tags.

4.2.1 Author-topic Model

The author-topic model proposed by Rosen-Zvi et al. [2004] makes use of authorship
information to improve topic modelling, it is a combination of both the LDA and
the author model. The author model is analogous to a topic model, but with words
generated from author-word distributions rather than topic–word distributions. The
author model is not an admixture model like the LDA.

In the author-topic model, a new latent variable x is introduced, which serves to
assign a word to an author. Hence, each word under this model is assigned a topic

8A tweet was limited to be 140 characters or less.
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Figure 4.2: Graphical model for the author-topic model (ATM). As before, the shaded
node represents observed variable while the unshaded represent latent variables.

and an author. The generative model for the author-topic model can be summarised
as follows:

(νi | µ) ∼ Dirichlet(µ) , for i = 1, . . . , A , (4.5)

(φk | γ) ∼ Dirichlet(γ) , for k = 1, . . . , K , (4.6)

(xdn | ad) ∼ Uniform(ad) , for d = 1, . . . , D , n = 1, . . . , Nd , (4.7)

(zdn | xdn, ν) ∼ Discrete(νxdn) , (4.8)

(wdn | zdn, φ) ∼ Discrete(φzdn) , (4.9)

Here, νi is the author–topic distribution for author i, which is used in generating the
latent topic zdn given the latent author xdn , who is assumed to have written the word
n in document d. Figure 4.2 shows the graphical model of author-topic model.

Note that the latent author xdn is generated uniformly9 from ad , the list of au-
thors in document d. This means that each word in document d is assumed to be
contributed randomly by one of the authors. However, this assumption is not real-
istic, since a document is often written by the first author, and then adjusted by the
others. In addition, the assumption fails to recognise the dependency of the words in
term of authorship, that is, consecutive words tend to be penned down by the same
person. A relaxation of this assumption would be to induce asymmetry in authorship
and/or to assign authorship given the structure of the documents.

4.2.2 Tag-topic Model

The tag-topic model [Tsai, 2011] is essentially the same as author-topic model, except
that the authorship information is replaced by tags. The model is arguably better
than author-topic model as tags are more closely related to topics than authors, in

9We denote Uniform(b) to be a discrete uniform distribution for which the random outcome is one
of the value from b chosen randomly with probability 1/|b|.
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Figure 4.3: Graphical model for the supervised LDA. The shaded node represents
observed variable while the unshaded nodes represent latent variables.

fact, a tag can be seen as a topic. The graphical model of the tag-topic model is
omitted as it is almost identical to that of author-topic model. There are several topic
model variants that also utilise tag information, this includes the TagLDA [Zhu et al.,
2006] and the Tag-LDA (with hyphen) [Si and Sun, 2009].

4.2.3 Supervised LDA

In contrast to author-topic model and tag-topic model where the metadata are used
in generating the words in a document, supervised LDA deals with metadata that is
generated from the model, like the generation of words. Supervised LDA works with
any metadata that are relevant to a document. For example, movie ratings (score)
for movie reviews (text). As such, supervised LDA can also be used to predict any
quantity of interest (metadata) given the text data.

The graphical model for supervised LDA is given in Figure 4.3. Under this model,
in addition to the usual generative process given by standard LDA (see Section 4.1),
the observed variable yd is generated by

(yd | zd, β, δ) ∼ GLM(z̄d, β, δ) , (4.10)

where GLM(x, β, δ) denotes the generalised linear model [McCullagh, 1984] with
covariates x, regression parameters β and dispersion parameter δ. The probability
density function for GLM is given by

p(y | x, β, δ) = h(y, δ) exp
(
(x · β)y− A(x · β)

δ

)
. (4.11)

Here, the functions h(y, δ) and A(x · β)) are known as link function and log-normaliser.
For more details, refer to Mcauliffe and Blei [2008], and McCullagh [1984].

Note that supervised LDA represents each zdn as a vector, for which exactly one
value in the vector is 1 (the rest being 0). The explanatory power to predict yd is then
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given by the mean vector z̄d , which is the topic proportion for document d:

z̄d =
∑Nd

n=1 zdn

Nd
. (4.12)

4.3 Other Topic Models

There are many topic models that are used, both in practice and in theory. This
section gives an overview of some of the topic models in the literature.

There are several topic models that model the evolution of topics through time
or chapters, namely the dynamic topic model [Blei and Lafferty, 2006], the infinite
dynamic topic model [Ahmed and Xing, 2010], the continuous time dynamic topic
model [Wang et al., 2008], the topics over time model [Wang and McCallum, 2006],
the online LDA [AlSumait et al., 2008], and many more.

Topic models that take the document structure into account includes the adap-
tive topic model [Du et al., 2012a], the segmented topic model [Du et al., 2010], the
sequential LDA [Du et al., 2012b], the structured topic model [Du et al., 2013], and
the structural topic model [Wang et al., 2011a]. In other cases, the words in a docu-
ment are not modelled with a bag-of-word assumption (i.e., the words are not inde-
pendently generated). Word dependency is explored by the Hidden Topic Markov
Model [Gruber et al., 2007], the Bigram topic model [Wallach, 2006], and the topical
n-grams [Wang et al., 2007].

In addition to the topic models mentioned in Section 4.2, topic models that use
metadata for specific purpose are the Topic-tag model and the User-topic tag model
[Bundschus et al., 2009] which are used in tagging system. The inheritance topic
model [He et al., 2009] uses citations to predict topic evolution; while the topic-
sentiment mixture model [Mei et al., 2007] and the joint sentiment/topic model [Lin
and He, 2009] perform sentiment analysis. Other notable topic models include the
correlated topic model [Blei and Lafferty, 2007] that treats the topics as not inter-
changeable and induce correlation between them, and the multi-grain topic model
[Titov and McDonald, 2008b] that models both global and local topics in a corpus.

4.4 Summary

In this chapter, we discuss some notable topic models used in practice, which are
Bayesian in nature. In particular, we describe the LDA, which is the most basic
Bayesian topic model, and then we touch on the HDP-LDA. We also outline some
topic models that incorporate auxiliary information in their modelling, which inspire
our proposed topic models in the later chapters.

In the next chapter, we present a generic topic model that employs the hierarchical
Pitman-Yor process (HPYP). We then discuss a general framework to implement the
topic model, which will also be used for topic models that are more complicated.



Chapter 5

Model Design and Implementation

In this chapter, we will discuss the basic design of our nonparametric Bayesian topic
models using hierarchical Pitman-Yor process (HPYP). In particular, we will intro-
duce a simple topic model that will be extended later. We discuss the general infer-
ence algorithm for the topic model and hyperparameters optimisation. In addition, we
will present an evaluation metric commonly used to evaluate topic models.

From this chapter onward, we depart from the literature review and instead focus
on the research aspect of this dissertation. The findings of this chapter are currently
in press [Lim et al., 2016].

5.1 Introduction

Development of topic models is fundamentally motivated by their applications. De-
pending on the application, a specific topic model that is most suitable for the task
should be designed and used. However, despite the ease of designing the model,
the majority of time is spent on implementing, assessing, and redesigning it. This
calls for a better designing routine that is more efficient, that is, spending less time
in implementation and more time in model design and development.

We can achieve this by a higher level implementation of the algorithms for topic
modelling. This has been made possible in other statistical domains by BUGS [Lunn
et al., 2000] or JAGS [Plummer, 2003], albeit they only work with standard proba-
bility distributions. Theoretically, BUGS and JAGS will work on LDA; however, in
practice, running Gibbs sampling for LDA with BUGS and JAGS is horrendously
slow, this is because their Gibbs samplers are uncollapsed and not optimised. Fur-
thermore, BUGS and JAGS cannot be used in a model with stochastic processes, like
the Gaussian process (GP) and the Dirichlet process (DP).

Besides BUGS and JAGS, there are other frameworks that are designed for per-
forming inference for general model. Examples include the Adaptor Grammars (AG)
[Johnson et al., 2007], Infer.NET [Minka et al., 2014] and the Hierarchical Bayes Com-
piler (HBC) [Daumé III, 2007]. The AG are built specifically for modelling natural
language and can be used to learn grammars (separating suffix from words), colloca-
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tions (multi-words), and others. The AG is also shown to perform topic modelling,
which acts as a variation of LDA. The AG framework is very useful in modelling
hierarchical structure that has a tree structure.

Infer.NET is a framework for running Bayesian inference, it is aimed to solve
many different kinds of machine learning problems using a variety of methods. One
limitation of Infer.NET is that it does not deal with nonparametric models such as
the DP, and hence is of little use to Bayesian nonparametric methods. Similar to In-
fer.NET, the HBC is designed to allow quick implementation of hierarchical models.
Although HBC seems very promising, the project appears to be abandoned. Also,
both Infer.NET and HBC failed to cover an important aspect of Bayesian modelling,
that is, the sampling of hyperparameters (estimating the parameters of the priors).

Creating a program like BUGS (Bayesian inference using Gibbs sampling) or
JAGS (just another Gibbs sampler) is a daunting task; it involves software engineer-
ing and good programming insight. In the following, we present a framework that
allows us to implement HPYP topic models efficiently, achieved by modularising the
PYP in the topic model. This framework allows us to test variants of our proposed
topic models without significant reimplementation, which saves us precious time and
effort in the implementation phase. In the next section, we first describe a general
hierarchical PYP topic model, before discussing the framework.

5.2 Hierarchical Pitman-Yor Process Topic Model

Latent Dirichlet Allocation (LDA) [Blei et al., 2003] is the simplest Bayesian topic
model used in modelling text, which also allows easy learning of the model. Teh
and Jordan [2010] proposed the HDP-LDA, which utilises the DP as a nonpara-
metric prior which allows a non-symmetric, arbitrary dimensional topic prior to be
used. Furthermore, one can replace the Dirichlet prior on the word vectors with the
Pitman-Yor Process (PYP) [Teh, 2006b], which models the power-law of word fre-
quency distributions in natural language [Goldwater et al., 2011], yielding significant
improvement [Sato and Nakagawa, 2010].

In this section, we introduce a generic topic model named the HPYP topic model.
The HPYP topic model is a simple network of PYP nodes since all distributions on
the probability vectors are modelled by the PYP. For simplicity, we assume a topic
model with three PYP layers, although in practice there is no limit to the number of
PYP layers.

We present the graphical model of our generic topic model in Figure 5.1. At the
root level, we have µ and γ which are distributed according to a PYP:

µ ∼ PYP(αµ, βµ, Hµ) , (5.1)

γ ∼ PYP(αγ, βγ, Hγ) . (5.2)
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Figure 5.1: Graphical model of the HPYP topic model. It is an extension to LDA
by allowing the probability vectors to be modelled by PYPs instead of the Dirichlet
distributions. Left side of the graphical model (consists of µ, ν and θ) is referred as
topic side, while the right hand side (with γ and φ) is called the vocabulary side. The
word node denoted by wdn is observed. Notations are defined in Table 5.1.

The variable µ is the root node for the topics in a topic model while γ is the root
node for the words. To allow arbitrary number of topics to be learned, we let the base
distribution for µ, Hµ, to be a continuous distribution or a discrete distribution with
infinite samples. Note that the samples itself are ignored since we can relabel them
to anything we like, thus the base distribution is of no significance. In this case, µ is
also GEM distributed.

We usually choose a discrete uniform distribution for γ based on the word vo-
cabulary size of the text corpus. This decision is technical in nature, as we are able
to assign a tiny probability to words not observed in the training set, which eases
the evaluation process. Thus Hγ = {· · · , 1

|V| , · · · } where |V| is the set of all word
vocabulary of the text corpus.

We now consider the topic side of the HPYP topic model. Here we have ν, which
is the child node of µ. It follows a PYP given ν, which acts as its base distribution:

ν ∼ PYP(αν, βν, µ) . (5.3)

For each document d in a text corpus of size D, we have a document–topic distribu-
tion θd , which is a topic distribution specific to a document. Each of them tells us
about the topic composition of a document.

θd ∼ PYP(αθd , βθd , ν) , for d = 1, . . . , D . (5.4)

While for the vocabulary side, for each topic k learned by the model, we have a
topic–word distribution φk which tells us about the words associated with each topic.
The topic–word distribution φk is PYP distributed given the parent node γ:

φk ∼ PYP(αφk , βφk , γ) , for k = 1, . . . , K . (5.5)

Here, K is the number of topics in the topic model.
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Table 5.1: List of variables for the HPYP topic model used in this chapter.

Variable Name Description

zdn Topic Categorical/topical label for word wdn .

wdn Word
Observed word or phrase at position n
in document d.

φk Topic–word distribution
Probability distribution in generating
words for topic k.

θd Document–topic distribution
Probability distribution in generating
topics for document d.

γ Global word distribution Word prior for φk .

ν Global topic distribution Topic prior for θd .

µ Global topic distribution Topic prior for ν.

αN Discount Discount parameter for PYP N .

βN Concentration Concentration parameter for PYP N .

HN Base distribution Base distribution for PYP N .

For every word wdn in a document d which is indexed by n (from 1 to Nd , the
number of words in document d), we have a latent topic zdn (also known as topic as-
signment) which indicates the topic the word represents. zdn and wdn are categorical
variables generated from θd and φk respectively:

zdn | θd ∼ Discrete(θd) , (5.6)

wdn | zdn, φ ∼ Discrete(φzd) , for n = 1, . . . , Nd . (5.7)

The above α and β are the discount and concentration parameters of the PYPs (see
Section 3.3.2), note that they are called the hyperparameters in the model. We present
a list of variables used in this chapter in Table 5.1.

5.3 Model Representation and Posterior Likelihood

In a Bayesian setting, posterior inference for a topic model requires us to analyse the
posterior distribution of the model variables given the observed data. For instance,
the joint posterior distribution for the HPYP topic model is

p(µ, ν, γ, θ, φ, Z |W, Ξ) . (5.8)
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Here, we use bold face capital letters to represent the set of all relevant variables, as
discussed in Section 1.4. For instance, W captures all words in the corpus. Addition-
ally, we denote Ξ as the set of all hyperparameters and constants in the model.

Note that deriving the posterior distribution analytically is almost impossible due
to its complex nature. This leaves us with approximate Bayesian inference techniques
as discussed in Section 2.2. However, even with the above techniques, performing
posterior inference with the posterior distribution is difficult due to the coupling of
the probability vectors from the PYPs.

The key to an efficient inference procedure with the PYPs is to marginalise out
the PYPs in the model and record various associated counts instead, which yields
a collapsed sampler. To achieve this, we adopt a Chinese Restaurant Process (CRP)
metaphor [Teh and Jordan, 2010; Blei et al., 2010] to represent the variables in the
topic model. With this metaphor, all data in the model (e.g., topics and words) are
the customers; while the PYP nodes are the restaurants the customers visit. In each
restaurant, each customer is to be seated at only one table, though each table can
have any number of customers. Each table in a restaurant serves a dish, the dish
corresponds to the categorical label a data point may have (e.g., the topic label or
word). Note that there can be more than one table serving the same dish. In a HPYP
topic model, the tables in a restaurant N are treated as the customers for the parent
restaurant P (in the graphical model, P points to N ), and they share the same dish.
This means that the data is passed up recursively until the root node. For illustration,
we present a simple example in Figure 5.2, showing the seating arrangement of the
customers from two restaurants.

Naïvely recording the seating arrangement (table and dish) of each customer
brings about computational inefficiency during inference. Instead, we adopt the
table multiplicity (or table counts) representation of Chen et al. [2011] which requires
no dynamic memory, thus consuming only a factor of memory at no loss of inference
efficiency. Under this representation, we store only the customer counts and table
counts associated with each restaurant. The customer count cNk denotes the number
of customers who are having dish k in restaurant N . The corresponding symbol
without subscript, cN , denotes the collection of customer counts in restaurant N ,
that is, cN = (· · · , cNk , · · · ). The total number of customers in a restaurant N is
denoted by the capitalised symbol instead, CN = ∑k cNk . Similar to the customer
count, the table count tNk denotes the number of non-empty tables serving dish k
in restaurant N . The corresponding tN and TN are defined similarly. For instance,
from the example in Figure 5.2, we have c2

sun = 9 and t2
sun = 3, the corresponding

illustration of the table multiplicity representation is presented in Figure 5.3. We refer
the readers to Chen et al. [2011] for a detailed derivation of the posterior likelihood
of a restaurant.

For the posterior likelihood of the HPYP topic model, we marginalise out the
probability vector associated with the PYPs and represent them with the customer
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Figure 5.2: An illustration of the Chinese restaurant process representation. The
customers are represented by the circles while the tables are represented by the rect-
angles. The dishes are the symbols in the middle of the rectangles, here they are
denoted by the sunny symbol and the cloudy symbol. In this illustration, we know
the number of customers corresponds to each table. For example, the green table is
occupied by three customers. We note that there is no limit to the number of cus-
tomers who can sit at a table. Also, since Restaurant 1 is the parent of Restaurant 2,
the tables in Restaurant 2 are treated as the customers for Restaurant 1.

counts and table counts, following Chen et al. [2011, Theorem 1]. We present the
modularised version of the full posterior of the HPYP topic model, which allows the
posterior to be computed very quickly. The full posterior consists of the modularised
likelihood associated with each PYP in the model, defined as

f (N ) =

(
βN
∣∣αN )TN(

βN
)

CN

K

∏
k=1

ScNk
tNk , αN

(
cNk
tNk

)−1

, for N ∼ PYP
(
αN , βN ,P

)
. (5.9)

As mentioned in Section 3.2.4, Sx
y,α are generalised Stirling numbers [Buntine and

Hutter, 2012, Theorem 17]. Both (x)T and (x|y)T denote the Pochhammer symbols
(rising factorials) [Oldham et al., 2009, Chapter 18]:

(x)T = x · (x + 1) · · ·
(
x + (T − 1)

)
, (5.10)

(x|y)T = x · (x + y) · · ·
(
x + (T − 1)y

)
. (5.11)



§5.3 Model Representation and Posterior Likelihood 39

 

Restaurant 1 

 

 

 

 

Restaurant 2 

 

 

 

Figure 5.3: An illustration of the Chinese restaurant with the table counts represen-
tation. Here the setting is the same as Figure 5.2 but the seating arrangement of
the customers are “forgotten” and only the table and customer counts are recorded.
Thus, we can only know there are three sunny tables in Restaurant 2, and that there
are nine customers sitting on those tables.

With the CRP representation, the full posterior of the HPYP topic model can now be
written — in terms of f (·) given in Equation (5.9) — as

p(Z, T, C |W, Ξ) ∝ p(Z, W, T, C |Ξ)

∝ f (µ) f (ν)

(
D

∏
d=1

f (θd)

)(
K

∏
k=1

f (φk)

)
f (γ)

( |V|
∏
v=1

(
1
|V|

)tγ
v
)

. (5.12)

The last term in Equation (5.12) corresponds to the base distribution of γ, and v
indexes each unique word in vocabulary set V . Note that the topic assignments Z
are implicitly captured by the customer counts:

cθd
k =

Nd

∑
n=1

I(zdn = k) , (5.13)

where I(·) is the indicator function, which evaluates to 1 when the statement inside
the function is true, and 0 otherwise. We would like to point out that even though
the probability vectors of the PYPs are integrated out and not explicitly stored, they
can easily be reconstructed. This is discussed in Section 5.4.4.
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5.4 Posterior Inference for the HPYP Topic Model

We focus on the Markov chain Monte Carlo (MCMC) method for Bayesian inference
on the HPYP topic model. The MCMC method on topic models follows these simple
procedures — decrementing counts contributed by a word, sample a new topic for
the word, and update the model by accepting or rejecting the proposed sample. Here,
we describe the collapsed blocked Gibbs sampler for the HPYP topic model. Note
the PYPs are marginalised out so we only deal with the counts. Recall that we will
always accept the proposed sample in Gibbs sampling (see Section 2.2.1.2).

5.4.1 Decrementing the Counts Associated with a Word

The first step in a Gibbs sampler is to remove a word and corresponding latent
topic, then decrementing the associated customer counts and table counts. To give
an example from Figure 5.2, if we remove the red customer from Restaurant 2, we
would decrement the customer count c2

sun by 1. Additionally, we also decrement
the table count t2

sun by 1 because the red customer is the only customer on its table.
This in turn decrements the customer count c1

sun by 1. However, this requires us to
keep track of the customers’ seating arrangement which leads to increased memory
requirements and poorer performance due to inadequate mixing [Chen et al., 2011].

To overcome the above issue, we follow the concept of table indicator [Chen et al.,
2011] and introduce a new auxiliary Bernoulli indicator variable uNk , which indicates
whether removing the customer also removes the table by which the customer is
seated. Note that our Bernoulli indicator is different to that of Chen et al. [2011] which
indicates the restaurant a customer contributes to. The Bernoulli indicator is sampled
as needed in the decrementing procedure and it is not stored, this means that we
simply “forget” the seating arrangements and re-sample them later when needed,
thus we do not need to store the seating arrangement. The Bernoulli indicator of a
restaurant N depends solely on the customer counts and the table counts:

p
(
uNk
)
=

 tNk /cNk if uNk = 1

1− tNk /cNk if uNk = 0 .
(5.14)

In the context of the HPYP topic model described in Section 5.2, we formally
present how we decrement the counts associated with the word wdn and latent topic
zdn from document d and position n. First, on the vocabulary side, we decrement
the customer count c

φzdn
wdn associated with φzdn by 1. Then sample a Bernoulli indicator

u
φzdn
wdn according to Equation (5.14). If u

φzdn
wdn = 1, we decrement the table count t

φzdn
wdn

and also the customer count cγ
wdn by one. In this case, we would sample a Bernoulli

indicator uγ
wdn for γ, and decrement tγ

wdn if uγ
wdn = 1. We do not decrement the

respective customer count if the Bernoulli indicator is 0. Second, we would need to
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Table 5.2: All possible proposals for the blocked Gibbs sampler for the variables asso-
ciated with wdn . To illustrate, one sample would be zdn = 1, tNzdn

does not increment
(stays the same), and cNzdn

increments by 1, for all N in {µ, ν, θd, φzdn , γ}. We note that
the proposals can include states that are invalid, but this is not an issue since those
states have zero posterior probability and thus will not be sampled.

Variable Possibilities

zdn 1, . . . , K

tNzdn
tNzdn

, tNzdn
+ 1

cNzdn
cNzdn

, cNzdn
+ 1

decrement the counts associated with the latent topic zdn . The procedure is similar,
we decrement cθd

zdn by 1 and sample the Bernoulli indicator uθd
zdn . Note that whenever

we decrement a customer count, we sample the corresponding Bernoulli indicator.
We repeat this procedure recursively until the Bernoulli indicator is 0 or until the
procedure hits the root node.

5.4.2 Sampling a New Topic for a Word

After decrementing the variables associated with a word wdn , we use a blocked Gibbs
sampler to sample a new topic zdn for the word and the corresponding customer
counts and table counts. The conditional posterior used in sampling can be com-
puted quickly when the full posterior is represented in a modularised form. To
illustrate, the conditional posterior for zdn and its associated customer counts and
table counts is

p(zdn, T, C |Z−dn, W, T−dn, C−dn, Ξ) =
p(Z, T, C |W, Ξ)

p(Z−dn, T−dn, C−dn |W, Ξ)
, (5.15)

which is further broken down by substituting the posterior likelihood defined in
Equation (5.12), giving the following ratios of the modularised likelihoods:

f (µ)
f (µ−dn)

f (ν)
f (ν−dn)

f (θd)

f (θ−dn
d )

f (φzdn)

f (φ−dn
zdn )

f (γ)
f (γ−dn)

(
1
|V|

)tγ
wdn−

(
tγ
wdn

)−dn

. (5.16)

The superscript 2−dn indicates that the variables associated with the word wdn are
removed from the respective sets, that is, the customer counts and table counts are
after the decrementing procedure. Since we are only sample the topic assignment zdn

associated with one word, the customer counts and table counts can only increment
by at most 1, see Table 5.2 for a list of all possible proposals. This allows the ratios
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of the modularised likelihoods, which consists of ratios of Pochhammer symbol and
ratio of Stirling numbers,

f (N )

f (N−dn)
=

(βN )
(CN )−dn

(βN )CN

(βN |αN )TN

(βN |αN )
(TN )−dn

K

∏
k=1

ScNk
tNk , αN

S(cNk )
−dn

(tNk )
−dn, αN

, (5.17)

to simplify further. For instance, the ratios of Pochhammer symbols can be reduced
to constants, as follows:

(x)T+1

(x)T
= x + T ,

(x|y)T+1

(x|y)T
= x + yT . (5.18)

While the ratio of Stirling numbers, such as Sy+1
x+1, α

/
Sy

x, α , can be computed quickly via
caching [Buntine and Hutter, 2012]. We present a discussion on the Stirling numbers
caching in Section 5.6.

With the conditional posterior defined, we proceed to the sampling process. Our
first step involves finding all possible changes to the topic zdn , customer counts,
and the table counts (hereafter known as ‘state’) associated with adding the removed
word wdn back into the topic model. Since only one word is added into the model,
the customer counts and the table counts can only increase by at most 1, which limits
the possible states to a reasonably small number. Furthermore, the customer counts
of a parent node will only be incremented when the table counts of its child node
increases. Note that it is possible for the added customer to generate a new dish
(topic) for the model. This requires the customer to increment a new table count of
the root node µ by one, the new table is associated with the new topic.

Next, we compute the conditional posterior (Equation (5.15)) for all possible
states. As discussed, the conditional posterior (up to a proportional constant) can
be computed quickly by breaking down the posterior and calculating the relevant
parts. We then normalise them to sample one of the states to be the proposed next
state. Note that the proposed state will always be accepted.

Finally, given the proposal, we update the HPYP model by incrementing the
relevant customer counts and table counts. The technical details on the sampling
process is presented in Section 5.6 for interested readers.

5.4.3 Optimising the Hyperparameters

Choosing the right hyperparameters for the priors is important for topic models.
Wallach et al. [2009a] show that an optimised hyperparameter increases the robust-
ness of the topic models and improves their model fitting. The hyperparameters of
the HPYP topic models are the discount parameters and concentration parameters
of the PYPs. Here, we outline the procedure to optimise the concentration param-
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eters, but leave the discount parameters fixed due to the coupling of the discount
parameters and the Stirling numbers cache.

The concentration parameters β of all the PYPs are optimised using an auxiliary
variable sampler [Teh, 2006a]. Being Bayesian, we assume the concentration param-
eter βN of a PYP node N has the following hyperprior distribution:

βN ∼ Gamma(τ0, τ1) , for N ∼ PYP
(
αN , βN ,P

)
, (5.19)

where τ0 is the shape parameter and τ1 is the rate parameter. With the gamma prior,
we have restricted the value of βN to be strictly positive (βN > 0) instead of greater
than the negative of the discount parameter (βN > −αN ). The reason we choose the
gamma prior is because it is a conjugate prior which gives a gamma posterior for
βN . Additionally, this gives us a simple algorithm to optimise βN .

Before we are able to optimise βN , we first sample the auxiliary variables ω and
ζi given the current value of αN and βN , as follows:

ω | βN ∼ Beta
(
CN , βN

)
, (5.20)

ζi | αN , βN ∼ Bernoulli
(

βN

βN + iαN

)
, for i = 0, 1, . . . , TN − 1 . (5.21)

With these, we can then sample a new βN from its conditional posterior

βN
∣∣ω, ζ ∼ Gamma

(
τ0 +

TN−1

∑
i=0

ζi , τ1 − log(1−ω)

)
, (5.22)

where ‘log’ refers to the natural logarithm when the base is not specified. Note
that instead of sampling a single value for each βN , we could repeat the procedure
multiple times to obtain a simulated average for βN . Alternatively, we could also
simply take the mean of the conditional posterior as an estimate for βN , as follows:

E[βN |ω, ζ] =
τ0 + ∑i ζi

τ1 − log(1−ω)
. (5.23)

In the collapsed Gibbs sampler, hyperparameter sampling is performed once ev-
ery few iterations to update the hyperparameters. We summarise the collapsed Gibbs
sampler in Algorithm 5.1.

5.4.4 Estimating the Probability Vectors of the PYPs

Recall that the aim of topic modelling is to analyse the posterior of the model param-
eters, such as one in Equation (5.8). Although we have marginalised out the PYPs
in the above Gibbs sampler, the PYPs can be reconstructed from the associated cus-
tomer counts and table counts. Recovering the full posterior distribution of the PYPs
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Algorithm 5.1 Collapsed Gibbs Sampler for the HPYP Topic Model

1. Initialise the HPYP topic model by assigning random topic to the latent topic
zdn associated to each word wdn . Then update all the relevant customer counts
C and table counts T by using Equation (5.13) and setting the table counts to
be about half of the customer counts.

2. For each word wdn in each document d, do the following:

(a) Decrement the counts associated with wdn (see Section 5.4.1).

(b) Blocked-sample a new topic for zdn and corresponding customer counts C
and table counts T (see Section 5.4.2).

(c) Update (increment counts) the topic model based on the sample.

3. Update the hyperparameter βN for each PYP nodes N (see Section 5.4.3).

4. Repeat Steps 2 – 3 until the model converges or when a fix number of iterations
is reached.

is a complicated task. So, instead, we will analyse the PYPs via the expected value of
their conditional marginal posterior distribution, or simply, their posterior mean,

E[N |Z, W, T, C, Ξ] , for N ∈ {µ, ν, γ, θd, φk} . (5.24)

The posterior mean of a PYP corresponds to the probability of sampling a new
customer for the PYP. To illustrate, we consider the posterior of the topic distribution
θd . We let z̃dn to be an unknown future latent topic in addition to the known Z. With
this, we can write the posterior mean of θdk as

E[θdk |Z, W, T, C, Ξ] = E[p(z̃dn = k | θd, Z, W, T, C, Ξ) |Z, W, T, C, Ξ]

= E[p(z̃dn = k |Z, T, C) |Z, W, T, C, Ξ] . (5.25)

by replacing θdk with the posterior predictive distribution of z̃dn and note that z̃dn can
be sampled using the CRP, as follows:

p(z̃dn = k |Z, T, C) =
(αθd Tθd + βθd)νk + cθd

k − αθd Tθd
k

βθd + Cθd
. (5.26)

Thus, the posterior mean of θd is given as

E[θdk |Z, W, T, C, Ξ] =
(αθd Tθd + βθd)E[νk |Z, W, T, C, Ξ] + cθd

k − αθd Tθd
k

βθd + Cθd
, (5.27)

which is written in term of the posterior mean of its parent PYP, ν. The posterior
means of the other PYPs such as ν can be derived by taking a similar approach. This
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is achieved by introducing an additional variable that serves as a customer to the
particular PYP (just like z̃dn). Generally, the posterior mean corresponds to a PYP N
(with parent PYP P) is as follows:

E[Nk |Z, W, T, C, Ξ] =
(αN TN + βN )E[Pk |Z, W, T, C, Ξ] + cNk − αN TNk

βN + CN
, (5.28)

By applying Equation (5.28) recursively, we obtain the posterior mean for all the PYPs
in the model.

We note that the dimension of the topic distributions (µ, ν, θ) is K + 1, where K
is the number of observed topics. This accounts for the generation of a new topic as-
sociated with the new customer, though the probability of generating a new topic is
usually much smaller. In practice, we may instead ignore the extra dimension during
the evaluation of a topic model since it does not provide useful interpretation. One
way to do this is to simply discard the extra dimension of all the probability vectors
after computing the posterior mean. Another approach would be to normalise the
posterior mean of the root node µ after discarding the extra dimension, before com-
puting the posterior mean of others PYPs. Note that for a considerably large corpus,
the difference in the above approaches would be too small to notice.

5.5 Evaluations on Topic Models

Generally, there are two ways to evaluate a topic model. The first is to evaluate the
topic model based on the task it performs, for instance, the ability to make predic-
tions. The second approach is the statistical evaluation of the topic model on mod-
elling the data, which is also known as the goodness-of-fit test. In this section, we
will present some commonly used evaluation metrics (not exhaustive) that are appli-
cable to all topic models, but we first discuss the procedure for estimating variables
associated with the test set.

5.5.1 Predictive Inference on the Test Documents

Test documents, which are used for evaluations, are set aside during Gibbs sampling.
As such, the document–topic distributions θ̃ associated with the test documents are
unknown and hence need to be estimated. Note we have used the symbol tilde ( ˜ )
to represent the variables from the test set. One estimate for θ̃ is its posterior mean
given the variables learned from the Gibbs sampler:

ˆ̃θd = E[θ̃d |Z, W, T, C, Ξ] , (5.29)

obtainable by applying Equation (5.28). Note that since the latent topics Z̃ corre-
sponding to the test set are not sampled, the customer counts and table counts asso-
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ciated with θ̃d are 0, thus ˆ̃θd is equal to ν̂, the posterior mean of ν. However, this is
not a good estimate for the topic distribution of the test documents since they will be
identical for all the test documents. To overcome this issue, we will instead use some
of the words in the test documents to obtain a better estimate for θ̃. This method is
known as document completion [Wallach et al., 2009b], as we use part of the text to
estimate θ̃, and use the rest for evaluation. The common split in practice is fifty-fifty,
but it is also reasonable to use a smaller amount of words for estimation if the text is
reasonably long.

Getting a better estimate for θ̃ requires us to first sample some of the latent topics
z̃dn in the test documents. The proper way to do this is by running an algorithm akin
to the collapsed Gibbs sampler, but this would be excruciatingly slow due to the need
to re-sample the customer counts and table counts for all the parent PYPs. Instead,
we assume that the variables learned from the Gibbs sampler are fixed and sample
the z̃dn from their conditional posterior sequentially, given the previous latent topics:

p(z̃dn = k | w̃dn, θ̃d, φ, z̃d1, . . . , z̃d,n−1) ∝ θ̃dk φkwdn . (5.30)

Whenever a latent topic z̃dn is sampled, we increment the customer count cθ̃d
z̃dn

for the

test document. For simplicity, we set the table count tθ̃d
z̃dn

to be half the correspond-

ing customer counts cθ̃d
z̃dn

, this avoids the expensive operation of sampling the table
counts. Additionally, θ̃d is re-estimated using Equation (5.29) before sampling the
next latent topic. We note that the estimated variables are unbiased.

The final θ̃d becomes an estimate for the topic distribution of the test document
d. The above procedure is repeated R times to give R samples of θ̃

(r)
d , which are used

to compute the following Monte Carlo estimate of θ̃d:

ˆ̃θd =
1
R

R

∑
r=1

θ̃
(r)
d . (5.31)

The Monte Carlo estimate can then be used for computing the evaluation metrics.
Note that when estimating θ̃, we have ignored the possibility of generating a new
topic, that is, the latent topics z̃ are constrained to the existing topics, as previously
discussed in Section 5.4.4.

5.5.2 Goodness-of-fit Test

There are multiple ways to perform a goodness-of-fit test on statistical models, such
as calculating the mean square error in a regression model. Measures of goodness-
of-fit usually involves computing the discrepancy of the observed values and the
predicted values under the model. However, the observed variables in a topic model
are the words in the corpus, which are not quantifiable since they are discrete labels.
Thus evaluations on topic models are usually based on the model likelihoods instead.
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A popular metric commonly used to evaluate the goodness-of-fit of a topic model
is perplexity, which is negatively related to the likelihood of the observed words W
given the model, this is defined as

perplexity(W | θ, φ) = exp

(
− ∑D

d=1 ∑Nd
n=1 log p(wdn | θd, φ)

∑D
d=1 Nd

)
, (5.32)

where p(wdn | θd, φ) is the likelihood of sampling the word wdn given the document–
topic distribution θd and the topic–word distributions φ. Computing p(wdn | θd, φ)

requires us to marginalise out zdn from their joint distribution, as follows:

p(wdn | θd, φ) = ∑
k

p(wdn, zdn = k | θd, φ)

= ∑
k

p(wdn | zdn = k, φk) p(zdn = k | θd)

= ∑
k

φkwdn θdk . (5.33)

Although perplexity can be computed on the whole corpus, in practice we com-
pute the perplexity on test documents. This is to measure if the topic model gener-
alises well to unseen data. A good topic model would be able to predict the words in
the test set better, thereby assigning a higher probability p(wdn | θd, φ) in generating
the words. Since perplexity is negatively related to the likelihood, a lower perplexity
is better.

Note that the perplexity or simply the likelihood of a topic model can be used
to assess the effectiveness of a training algorithm. By occasionally computing the
perplexity (on the training set) during training, we can see whether if the model
fitting is getting better, which is an important tool for topic model diagnostics.

5.5.3 Topic Similarity Analysis

In topic models, each individual word in the corpus is assigned a single topic label
through the inference procedure. Ideally we would like all the words which are
assigned to the same topic to be coherent and make sense as a topic. To evaluate
the ability of a topic model to form coherent topics, we could manually analyse the
topic–word distributions φ, by listing and inspecting the top words. The top n words
of a topic–word distribution φk are obtained by querying words v1, . . . , vn for which
the probability φkv are highest. However, this process can be tedious for topic models
with large number of topics. Moreover, humans’ judgement can be unreliable and
inconsistent with one another.

A quantitative alternative would be to compute the pairwise Hellinger distance
[Newman et al., 2009] for each pair of topic–word distributions. The Hellinger dis-
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tance is commonly used to measure the dissimilarity between two probability distri-
butions, it is given as

Hellinger(φi, φj) =
1√
2

( |V|
∑
v=1

(√
φiv −

√
φjv

)2
) 1

2

. (5.34)

From Equation (5.34), we can see that the Hellinger distance for two similar proba-
bility vectors will be close to zero. We would like the topics to be as dissimilar as
possible, thus the higher the Hellinger distance the better. The Hellinger distance is
upper-bounded by one. To quickly visualise all K2 Hellinger distances, we can dis-
play them as a heat chart, which gives a one-glance view of the similarity between the
topics. Examples of the heat chart can be found in later chapters (e.g., in Figure 6.4).

5.5.4 Document Clustering

Recall that topic models assign a topic to each word in a document, essentially per-
forming a soft clustering [Erosheva and Fienberg, 2005] for the documents in which
the membership is given by the document–topic distribution θ. To evaluate the clus-
tering of the documents, we convert the soft clustering to hard clustering by choosing
a topic that best represents the documents, hereafter called the dominant topic. The
dominant topic of a document d corresponds to the topic that has the highest pro-
portion in the topic distribution, that is,

Dominant Topic(θd) = arg max
k

θdk . (5.35)

Two commonly used evaluation measures for clustering are purity and normalised
mutual information (NMI) [Manning et al., 2008]. Purity is a simple clustering measure
which can be interpreted as the proportion of documents correctly clustered, while
NMI is an information theoretic measures used for clustering comparison. Here,
we denote the ground truth classes as S = {s1, . . . , sJ} and the obtained clusters as
R = {r1, . . . , rK}, where each si and ri represents a collection (set) of documents. The
purity and NMI can then be computed as

purity(S ,R) = 1
D

K

∑
k=1

max
j
|rk ∩ sj| , NMI(S ,R) = 2 MI(S ;R)

E(S) + E(R) , (5.36)

where MI(S ;R) denotes the mutual information between two sets and E(·) denotes
the entropy. They are defined as follows:

MI(S ;R) =
K

∑
k=1

J

∑
j=1

|rk ∩ sj|
D

log2 D
|rk ∩ sj|
|rk||sj|

, E(R) = −
K

∑
k=1

|rk|
D

log2
|rk|
D

. (5.37)
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5.6 Implementation

To perform inference on a general topic model with a hierarchical PYP structure, we
implemented a general topic modelling framework that modularise the PYP nodes.
In this section, we briefly discuss the implementation of the general topic modelling
framework, which is written in the Java programming language.

Our topic model framework consists of three parts, which are data preprocessing,
model learning, and evaluation. Here we focus on model learning. We leave the data
preprocessing discussion to the later chapters where they require different prepro-
cessing techniques tailored to various data type. The implementation for evaluation
is relatively straightforward and thus not discussed.

5.6.1 State

We first discuss the state of the model, which is a collection of variables used in the
model. The state consists of all the PYP nodes of the model, the base distribution
Hγ, and the topic assignment Z. We briefly describe each part as follows.

5.6.1.1 PYP Node

Each PYP node N in the implementation framework stores the discount parameter
αN and the concentration parameter βN , as well as the associated customer counts
and table counts. Additionally, the PYP node also has a reference to its parent node
(base distribution), allowing recursive operations to be performed easily.

The PYP node has routines (functions) to increment counts and decrement counts
(and also sample the Bernoulli indicator used in decrementing counts). These pro-
cedures are recursive in that they call the respective routines of its parent node. In
addition, the PYP node has a routine to sample a new concentration parameter βN ,
following the procedure in Section 5.4.3. Finally, the PYP node can also compute
the modularised likelihood and the likelihood ratio according to Equation (5.9) and
Equation (5.17), and estimate its posterior mean with Equation (5.28).

5.6.1.2 Base Distribution

Here, we describe the base distribution that is in the form of probability vector.
An example of this is Hγ, which is a uniform vector. In our implementation, we
treat the base distribution like a PYP node, we store the “customer counts” for the
base distribution, which are just the table counts from its child node. Unlike PYP
node, the base distribution does not have table counts. Note that although storing
the customer counts and table counts for each PYP node may seem redundant, it is
actually important for more complicated topic models in the later chapters.

The base distribution has similar routines to the PYP Node, with a major differ-
ence in the way of computing the likelihood. For instance, the modularised posterior
likelihood for the base distribution Hγ corresponds to the last term in Equation (5.12).
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5.6.1.3 Topic Assignments

The topics in the topic model are represented as a positive integer from 0 to K − 1,
where K is the number of topics. As such, the topic assignments in Z take values
from 0 to K− 1.

In our implementation, we store the topic assignments zd for each document d as
separate variables. Each of the zd is a vector of zdn and has a reference to its parent
node, θd . The topic assignments zd has a routine to initialise itself randomly, which
also update the counts of the parent nodes recursively.

5.6.1.4 Customer Counts and Table Counts

The table counts t and the customer counts c for a PYP node N can be sparse, that
is, most of the tk and ck are zeros.10 For efficient storage of the table counts and the
customer counts, we adopt the OpenIntIntHashMap from the Colt library,11 which is a
more efficient HashMap for integers.

Furthermore, we store the various sums of the table counts and the customer
counts in a cache. This avoids the need to compute the sum repeatedly, thus speeds
up the algorithm considerably.

5.6.2 Inference Procedure

Next we briefly discuss the procedure to perform one iteration of Gibbs sampling for
each word wdn in document d. Our first step is to decrement the counts associated
with wdn and zdn , which is achieved by calling the decrement routine on the PYP
nodes θd and φzdn . As discussed above, the PYP nodes recursively decrement the
counts of their parent nodes based on the sampled Bernoulli indicators.

After decrementing the counts, we proceed with performing Gibbs sampling to
sample a new znew

dn and the associated counts. The Gibbs sampler first generate a
list of all possible next states for the model, which are the combination of the next
topic and whether or not to increment the customer counts and/or table counts.
The conditional posteriors, as in Equation (5.15), are then computed for each of the
possible state. Note that since the conditional posteriors can only be computed up to
a proportional constant, we normalise them (so they sum up to 1) before sampling
for one of the states. The sampled state then becomes the next state for the model.

We would like to point out that to prevent underflow and to maintain a better
accuracy, the posterior likelihoods (and their ratios) are computed in log form. We
also note in our implementation, we cache the posterior ratios of each PYP node to
improve the algorithm speed, since they tend to occur many times in the calculation
of all the possible next states.

10We ignore the superscript 2N for better presentation.
11http://dst.lbl.gov/ACSSoftware/colt/ (last accessed 10 February 2013).

http://dst.lbl.gov/ACSSoftware/colt/
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5.6.3 Stirling Numbers

Finally, we describe the implementation for the computation of the Stirling numbers.
We first note that the ratio of Stirling numbers can be computed recursively [Buntine
and Hutter, 2012] as follows:

Uc
t, α =

Sc+1
t, α

Sc
t, α

, for c ≥ t ≥ 1 , (5.38)

Vc
t, α =

Sc
t, α

Sc
t−1, α

, for c ≥ t > 1 . (5.39)

The relationships of U and V are given as

Uc
t, α =

1
Vc

t, α

+ c− tα , for c ≥ t > 1 , (5.40)

Vc
t, α =

1 + (c− 1− tα)Vc−1
t, α

Uc−1
t−1, α

, for c ≥ t > 1 , (5.41)

with the base case Uc
1, α = c− α and noting that Vc

t, α = 0 if t > c. In our implemen-
tation, we store only the values of V and compute U as needed. With these, we can
then compute the Stirling numbers Sc

t, α recursively and store them in log form, since
their values get exponentially larger. To conserve the memory, we store the Stirling
numbers after every j-th increment in c, but storing them for every t, that is, we
store St+1

t, α , St+1+j
t, α , St+1+2j

t, α and so on for every t. The unstored Stirling numbers are
obtained via the following linear interpolation (in log form) from the nearest stored
Stirling numbers:

log St+1+nj+i
t, α = log St+1+nj

t, α +
(

log St+1+(n+1)j
t, α − log St+1+nj

t, α

)
× i

j
. (5.42)

Note that since the linear interpolation is only accurate when c is relatively larger
than t (see Figure 5.4), we store the exact log Stirling numbers Sc

t, α in a separate table
when c− t < ρ. In our implementation, we set j = 20 and ρ = 40, though they can
easily be adjusted for different applications.

For large corpora of text the difference in c and t can be enormous, so it is not
always feasible to store all the log Stirling numbers. In our implementation, we make
use of the asymptotic expression of the Stirling numbers [Buntine and Hutter, 2012]
when c− t > τ, where τ is a threshold parameter. The asymptotic expression is

Sc
t,α ≈

1
Γ(1− α)

1
Γ(t) αt−1

Γ(c)
cα

, for α > 0 . (5.43)
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Figure 5.4: A plot of log Stirling numbers (log Sc
t, α) against the difference in counts

(c− t) for t = 1000 and α = 0.5. We can see that the log Stirling numbers are almost
linear when the difference in c and t is large. This makes the linear interpolation a
suitable method in estimating the unstored Stirling numbers.

In our experiments we find that the asymptotic estimates are more accurate as c− t
gets larger and as α approaches 1. Thus, we choose τ such that we do not compromise
the accuracy of the Stirling numbers:

τ = 4000 +
1000

α
. (5.44)

5.7 Summary

In this chapter, we introduce a general framework for modelling a hierarchical PYP
topic model. We present a simple topic model that will be used as a skeleton for the
later chapters. Using this topic model as an example, we walk through the model
specification, model likelihood, and its inference procedures. Additionally, we dis-
cuss a few evaluation measures commonly used on topic models. These evaluations
are applied to the topic models that we will introduce later. At the end of this chap-
ter, we describe the implementation philosophy of our PYP topic models. Note that
we only cover the non-trivial bits of our implementation in Section 5.6.

In the following chapters, we look into various topic models that are designed to
model documents with auxiliary information. We will first start with a topic model
that utilises hashtags and sentiment lexicons for opinion mining on tweets.



Chapter 6

Opinion Mining Using Hashtags,
Emoticons and Sentiment Lexicon

Aspect-based opinion mining is widely applied to review data to aggregate or sum-
marise opinions of a product. In this chapter, we introduce a topic model built upon
the previously discussed principles for opinion mining and sentiment analysis. We
name our model the Twitter Opinion Topic Model (TOTM), which as the name sug-
gests, performs opinion mining on tweets. Tweets are often informal, unstructured
and lacking labelled data such as categories and ratings, making it challenging for
opinion mining. The TOTM leverages hashtags, mentions, emoticons and strong sen-
timent words that are present in tweets in its discovery process. It improves opinion
prediction by modelling the target–opinion interaction directly, thus discovering tar-
get specific opinion words, neglected in existing approaches. Moreover, we propose
a new formulation of incorporating sentiment prior information into a topic model,
by utilising an existing public sentiment lexicon. This is novel in that it learns and
updates with the data. This chapter is an extension of our published work in Lim
and Buntine [2014b].

6.1 Introduction

When making a purchase decision, a key deciding factor can often be the reviews
written by other consumers. These reviews are freely available online. However, one
can rarely read all the reviews given their volume. This has led to various automated
algorithms to mine the reviews, extracting a more digestible summary for a user.
The task of analysing opinions from text data such as reviews is known as opinion
mining or opinion extraction [Pang and Lee, 2008; Liu, 2012].

Among various approaches to opinion mining, aspect-based opinion mining has re-
cently gained a lot of attention from the research community. Aspect-based opinion
mining involves extracting the major aspects or facets from data for analysis. As an
example, for a camera product, the aspects could be “picture quality”, “portability”,
and others. Topic models are often used to determine the aspects through soft clus-
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tering. They have also been successfully applied to review data crawled from review
websites, such as Epinions.com and TripAdvisor. LDA-based12 models are currently
considered to be the state-of-the-art for aspect-based opinion mining [Moghaddam
and Ester, 2012].

Besides reviews extracted from review websites, opinions from social media web-
sites are also very useful, even though they are often overlooked as a source for
reviews. Social media text is short and is regarded as “dirty”, and hence less useful
for more sophisticated language analysis [Zhao et al., 2011]. The same problem also
leads to degradation when applying NLP tools [Ritter et al., 2011]. Despite these
limitations, a large number of tweets containing opinions are generated every day
and are very relevant for opinion mining. We argue that while tweets are generally
unstructured, Twitter is a useful source of reviews since it provides a convenient
platform for users to express their opinions. Twitter is also integrated to a person’s
social life, making it easier for users to express their opinions (on products, services,
etc.) by tweeting instead of writing a review on review websites.

In this chapter, we demonstrate the usefulness of Twitter as a source for aspect-
based target–opinion mining. We propose a novel LDA-based opinion model that is
designed for tweets, which we name Twitter Opinion Topic Model (TOTM). TOTM
models the target–opinion interaction directly, which significantly improves opinion
prediction. For example, TOTM discovers that ‘grilled’ is a positive opinion word
for the target word ‘sausage’, but not for the other target words. We note that while
there are no explicit ratings and scores on tweets, tweets often contain emoticons
and strong sentiment words such as ‘love’ and ‘hate’. TOTM exploits this fact and
uses such information to compensate for the lack of explicit ratings. Additionally,
hashtags are strong indicators of topics for tweets [Mehrotra et al., 2013]. TOTM
makes use of the hashtags and mentions13 in tweets for tweet aggregation, which im-
proves aspect clustering. Modelling with TOTM also allows us to acquire additional
summaries on products, which are not obtainable with existing topic models.

Furthermore, we incorporate a sentiment lexicon as prior information into TOTM.
We propose a novel formulation of how the sentiment lexicon affects the priors in
TOTM. Our approach facilitates automatic learning of the lexicon strength based on
the data; while current existing methods are ad hoc or ruled-based. Our formulation
is shown to perform the best for sentiment classification. Additionally, we propose a
different target–opinion extraction procedure that works better for tweets. We note
that text preprocessing is important when dealing with tweets.

We apply TOTM on three tweet corpora, showing improved performance of
TOTM in model fitting and sentiment analysis. In terms of application, we demon-
strate the usefulness of TOTM in extracting the opinions on products from tweets.

12LDA is an acronym for Latent Dirichlet Allocation, as mentioned in previous chapters.
13Mentions are akin to user tagging, which are represented by the @ symbol. See https://support.

twitter.com/articles/14023-what-are-replies-and-mentions (last accessed 11 June 2014) for details.

https://support.twitter.com/articles/14023-what-are-replies-and-mentions
https://support.twitter.com/articles/14023-what-are-replies-and-mentions
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The tasks include opinion analysis on specific targets, brands opinion comparison,
and extraction of constrastive opinions. As large volumes of tweets laden with opin-
ions are generated daily, real-time aspect-based opinion analysis allows us to obtain
first-hand opinions on new products, which might not be as readily available from
review websites.

The rest of this chapter is structured as follows. Section 6.2 reviews recent work
relevant to this chapter, and Section 6.3 provides a summary of our task and outlines
the major contributions. In Section 6.4, we present and discuss the Interdependent
LDA (ILDA) [Moghaddam and Ester, 2011], which will be used as a baseline for
comparison. We introduce TOTM in Section 6.5 and the method of incorporating a
lexicon in Section 6.6. In Section 6.7, we discuss the model likelihood and inference
procedure of the TOTM, as well as propose a novel hyperparameter sampling proce-
dure. We then describe the data used in this chapter in Section 6.8 and discuss how
we preprocess the data. Next, we report on the experiments in Section 6.9 and per-
form model diagnostic in Section 6.10. Finally, we present a summary of this chapter
in Section 6.11.

6.2 Related Work

LDA has been extended by many for sentiment analysis. Notable LDA-based topic
models for sentiment analysis include the MaxEnt-LDA hybrid model [Zhao et al.,
2010], Joint Sentiment Topic model [Lin and He, 2009], Multi-grain LDA (MG-LDA)
[Titov and McDonald, 2008b], Interdependent LDA (ILDA) [Moghaddam and Es-
ter, 2011], Aspect and Sentiment Unification Model (ASUM) [Jo and Oh, 2011], and
Multi-Aspect Sentiment model [Titov and McDonald, 2008a]. The Topic-Sentiment
Mixture model [Mei et al., 2007] performs sentiment analysis by using the multino-
mial distribution instead of the Dirichlet–multinomial distribution. These models
perform aspect-based opinion analysis and they had been successfully applied to
review data of different domains, such as electronic product, hotel and restaurant
reviews. The task of summarising the reviews is also known as opinion aggregation.

To the best of our knowledge, there is no existing LDA-based opinion aggregation
method other than ours that has been successfully applied to social media data such
as tweets. Current opinion mining methods that are used on tweets tend to be ad hoc
or rule-based. We suspect this is because tweets are generally regarded as too noisy
for model-based methods to work, and also due to the fact that LDA works badly
on short documents [Yan et al., 2013]. Maynard et al. [2012] studied the challenges
in developing an opinion mining tool for social media and they advocated the use
of shallow techniques in linguistic processing of tweets. Notable non-LDA-based
methods for opinion analysis include OPINE [Popescu and Etzioni, 2005], which
uses relaxation labelling to classify sentiment, and Opinion Digger [Moghaddam
and Ester, 2010], an aspect-based review miner using k nearest neighbour. Hu and Liu
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[2004] performed rule-based target–opinion extraction from online product reviews,
while Li et al. [2010] extracted opinions from reviews using Conditional Random Fields.
On tweets, Pak and Paroubek [2010] performed opinion analysis using a Naive Bayes
classifier; while Liu et al. [2013] performed sentiment classification with an adaptive
co-training SVM. Go et al. [2009] and Davidov et al. [2010] made use of emoticons
(smileys), which were found to provide improvement for sentiment classification
on tweets. Since tweets are always short,14 existing work [Go et al., 2009; Pak and
Paroubek, 2010; Davidov et al., 2010; Liu et al., 2013] tends to assume a single polarity
for each tweet. In contrast, Jiang et al. [2011] performed target-dependent sentiment
analysis, where the sentiments apply to a specific target.

Lexical information can be used to improve sentiment analysis. He [2012] used
a sentiment lexicon to modify the priors of LDA for sentiment classification, though
with a simple ad hoc approach. Li et al. [2009] incorporated a lexical dictionary into
a non-negative matrix tri-factorisation model, using a simple rule-based polarity as-
signment. We refer the readers to Ding et al. [2008] and Taboada et al. [2011] for a
detailed review on applying lexicon-based methods for sentiment analysis. Instead
of using a lexicon, Jagarlamudi et al. [2012] used seeded words as lexical priors for
semi-supervised topic modelling.

6.3 Opinion Mining Task

In this section, we describe the opinion mining task we are tackling. We then outline
the major contributions of this work.

6.3.1 Problem Definition

Given a collection of documents (tweets), our first problem is to extract the target–
opinion pairs from each document. A target–opinion pair 〈w, o〉 consists of two
phrases: a target phrase w which is the object being described, and an opinion phrase o
which is the description. The target phrases are usually nouns and the opinion
phrases are usually adjectives. Examples include 〈picture quality, good〉, 〈iPhone app,
expensive〉, and others. Note that a phrase can either be a collocation (multi-word
phrase) or a single word. For simplicity, we will not distinguish between ‘word’ and
‘phrase’ in this dissertation, that is, a ‘word’ can mean a single-word or a collocation.

Our next problem is to group the target–opinion pairs into clusters and identify
the associated sentiments. The produced clusters should depend on the tweet corpus,
as they should represent different aspects of the corpus. For example, given a tweet
corpus which consists of various electronic products, we would like products that are
different — such as mobile phones and computers — to be grouped into different
clusters. Each target–opinion pair is assigned two latent labels, the first being aspect

14Each tweet is limited to at most 140 characters.
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a indicating which cluster the pair belongs, the second label being sentiment r. The
sentiment of a target–opinion pair refers to the polarity of the opinion phrase, which,
in this chapter, can be positive, neutral or negative.

Finally, we would like to display a summary (high level view) of the obtained
quadruples 〈w, o, a, r〉. There are many ways to do this, here we follow the standard
topic modelling approach and display the top results. In brief, our task of opinion
mining on tweets is to extract useful opinions and represent them in a format that is
easy to digest. As an example, for a tweet corpus on electronic products, we would
like to discover the users’ opinions on certain products, such as the iPhones.

6.3.2 Major Contributions

We make two major contributions as follows: Firstly, we design an LDA-based topic
model (TOTM) for performing aspect-based target–opinion analysis on product re-
views from tweets. TOTM is novel in that it directly models the target–opinion
interaction, giving significant improvement in opinion prediction. Existing aspect-
based methods only model the interaction between aspects and sentiments, leaving
the targets and opinions to be weakly associated through aspects and sentiments.
Without this explicit modelling, the existing models failed to sensibly assign opin-
ions to targets. To illustrate, from a restaurant review with friendly staff and deli-
cious cake, existing LDA-based opinion models failed to recognise that the adjective
‘friendly’ cannot be used to describe cake. Additionally, as mentioned in the introduc-
tion, TOTM makes use of available auxiliary variables in tweets (hashtags, mentions,
emoticons and strong sentiment words) to improve aspect-based opinion analysis.

Secondly, we propose a new formulation for incorporating a sentiment lexicon into topic
models. While existing methods adopt an ad hoc or ruled-based approach to incor-
porating sentiment prior, our formulation is novel in that it is learned automatically
given the data. This is done robustly using a tuning hyperparameter that is opti-
mised autonomously. The sentiment lexicon is used to adjust the opinion priors in
order to improve sentiment analysis.

6.4 Interdependent LDA

The Interdependent LDA (ILDA) [Moghaddam and Ester, 2011], as illustrated in
Figure 6.1, is an extension of LDA that performs aspect-based opinion analysis. It
jointly models the aspect (a) and sentiment15 (r) for each target–opinion pair 〈w, o〉
that are present in a document. We will assume that the sentiment r can only takes
three labels, {−1, 0, 1}, which correspond to negative, neutral and positive sentiment
respectively. However, we note that the sentiment variable r is an ordinal variable
and is not restricted to just three values.

15Also known as rating in Moghaddam and Ester [2011].
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Figure 6.1: Graphical Model for the Interdependent LDA (ILDA). Given D document
in a corpus and Nd target–opinion pairs 〈w, o〉 in document d, the observed variables
(shaded) w and o are influenced by the latent labels a (aspect) and r (sentiment)
respectively based on the aspect–target distributions ψ and the sentiment–opinion
distributions φ. The interaction between aspect a and sentiment r is learned by the
aspect-sentiment distribution η. The variable θ denotes the document–aspect distri-
butions. All α are priors of the corresponding Dirichlet distributions.

The ILDA has the following generative process. For each document d in a corpus,
we first sample a document–aspect distribution:

θd ∼ Dirichlet(αθ) , for d = 1, . . . , D . (6.1)

Then, for each aspect a, we sample an aspect-sentiment distribution ηa and an aspect–
target distribution ψa:

ηa ∼ Dirichlet(αη) , (6.2)

ψa ∼ Dirichlet(αψ) , for a = 1, . . . , A . (6.3)

Next, given each sentiment r, we sample a sentiment–opinion distribution:

φr ∼ Dirichlet(αφ) , for r ∈ {−1, 0, 1} . (6.4)

Finally, we model each target–opinion pair 〈wdn, odn〉 and also the associated latent
aspect adn and latent sentiment rdn:

adn | θd ∼ Discrete(θd) , (6.5)

rdn | adn, η ∼ Discrete(ηadn) , (6.6)

wdn | adn, ψ ∼ Discrete(ψadn) , (6.7)

odn | rdn, φ ∼ Discrete(φrdn) , for n = 1, . . . , Nd . (6.8)

In the above description of the generative process, the variables α are the hyperpa-
rameters corresponding to symmetric Dirichlet distributions.
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Figure 6.2: Graphical model for the Twitter Opinion Topic Model (TOTM). One as-
pect the TOTM is different to the ILDA is that it models the target–opinion interaction
directly, as shown by the connection between wdn and odn . Additionally, the TOTM
utilises seen emoticons (ed) in the document to enhance sentiment modelling. A
hierarchical structure of the priors in the bottom right enables the incorporation of
external sentiment lexicon.

ILDA models the sentiment conditionally on the aspect; and given the aspect and
sentiment, the target word and opinion word are generated independently. Although
such modelling is often adequate (since many of the opinion words can be applied
generally to most target words), it fails to take into account that some opinion words
are restricted to certain target words. For example, we can say that a phone has a short
battery life, but not short camera quality. This shortcoming arises from the problem that
opinion words are not tied with aspects (and hence target words).

6.5 Twitter Opinion Topic Model

Here we present TOTM for aspect-based opinion analysis on tweets. The graphi-
cal model is given in Figure 6.2. Contrary to ILDA, we do not model the aspect-
sentiment distribution η. Instead, we model the target–opinion pairs directly. This
allows us to better model the opinion words, and also provides us with a finer level
of opinion analysis. For example, TOTM will be able to model that the word ‘limited’
can describe battery life but is unlikely to be used to describe charger.

We introduce a variable e named emotion indicator, which detects the existence of
emoticons and/or strong sentiment words in the documents. The strong sentiment
words are hand-selected and represent words that are associated with a person’s
positive or negative feeling. The list of emoticons and strong sentiment words is
presented in Table 6.1. We define e to be −1 when only negative emotion is observed
and e to be 1 when only positive emotion is observed, otherwise we treat e as unob-
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Table 6.1: List of Emoticons and Strong Sentiment Words. The positive tokens are
associated with e = 1 while the negative tokens are linked to e = −1. These tokens
are hand-picked from Wikipedia and online dictionaries. Note that the sentiment
words include spelling variants of other regions (e.g., American English) even though
they are not explicitly listed here.

Type Tokens

Positive
Emoticons

:-) :o) :] :3 :c) :> =] 8) =) :} :∧) ;) ;-) :-D
;-D :D 8-D 8D x-D xD X-D XD =-D =D =-3 =3 x3 B∧D
:)) :-)) \o/ *\0/*

∧∧ ∧_∧ (∧_∧)/ (∧O∧)/ (∧o∧)/
(∧∧)/ (∧v∧) (∧u∧) (∧O∧) (∧o∧) )∧o∧( :} :-} =} C:
(: (-:

Negative
Emoticons

>:-( >:[ :-( :-c :c :-< :< :-[ :[ :{ :-|| :@
>:( ;( ;-( :’-( :’( D8 D:< D: D; D= DX v.v D-’:
(’_’) (/_;) (T_T) (;_;) (;_; (;_:) (;O;) (:_;)
(ToT) T.T T_T t.t t_t u_u !_! ): )-: )’: )-’:

Strong Positive
Sentiment Words

love, like, happy, glad, delighted, content, cheerful, cheery,
merry, joyful, jovial, jolly, gleeful, gratified, joyous, blessed,
thrilled, elated, exhilarated, ecstatic, blissful, overjoyed,
pleased, fortunate

Strong Negative
Sentiment Words

hate, dislike, angry, sad, upset, unhappy, sorrowful, dismal,
woeful, depressed, miserable, despairing, gloomy, broken-
hearted, heartbroken, tragic, unfortunate, awful, sorrowful,
grievous, traumatic, depressing, heartbreaking, agonised

served. Note that e = 0 would correspond to neutral emotion, but we have no such
observation so this is not considered.

TOTM uses the Pitman-Yor process (PYP) [Teh, 2006b] to generate probability vec-
tor given another mean probability vector. The PYP is parameterised by a discount
parameter α, a concentration parameter β, and a mean or base distribution H. De-
tails on the PYP can be found in Section 3.3.2. The generative process of TOTM is as
follows. First, we sample the document–aspect distribution θd for each document d,

θd ∼ PYP(αθd , βθd , Hθ) , for d = 1, . . . , D . (6.9)

Here, Hθ is an arbitrary continuous distribution.
Second, we model the emotion-sentiment distribution γe by a Dirichlet distribu-

tion with asymmetric prior:

γe | e ∼ Dirichlet(qe) , for e ∈ {−1, 1} . (6.10)

The prior qe is chosen such that q−1 = (0.9, 0.05, 0.05) and q1 = (0.05, 0.05, 0.9).
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Next, for the target words, we generate the aspect–target distribution ψa for each
aspect a as follows:

ψa ∼ PYP(αψa , βψa , Hψ) , for a = 1, . . . , A . (6.11)

Here, Hψ is a discrete uniform vector over the vocabulary of the target words (Vw),
that is, Hψ = (. . . , 1

|Vw| , . . . ).

For the opinion words, we propose a novel hierarchical modelling that allows an
opinion word to describe two different targets differently (e.g., short for processing time
is good but short for battery life is bad), while at the same time allows for sharing of
the polarity of opinion words between targets. This is achieved by assigning common
base distributions to the target–opinion distributions. So target–opinion distributions
φ′wr for different targets w share a common mean φr which itself is unknown so we
sample it from a uniform base φ∗r . More specifically, for each r ∈ {−1, 0, 1} and
w ∈ {1, . . . , |Vw|}, we generate φ′wr as follows:

φ∗r =

(
. . . ,

1
|Vo|

, . . .
)

, (6.12)

φr | φ∗r ∼ PYP(αφr , βφr , φ∗r ) , for r ∈ {−1, 0, 1} , (6.13)

φ′wr | φr ∼ PYP(αφ′wr , βφ′wr , φr) , for w ∈ {1, . . . , |Vw|} , (6.14)

where Vo is the vocabulary of the opinion words.

Finally, for each target–opinion pair 〈wdn, odn〉 (indexed by n) in document d, we
sample the respective aspect adn , sentiment rdn and the target–opinion pair:

adn | θd ∼ Discrete(θd) , (6.15)

rdn | ed, γ ∼ Discrete(γed) , (6.16)

wdn | adn, ψ ∼ Discrete(ψadn) , (6.17)

odn |wdn, rdn, φ′ ∼ Discrete
(
φ′wdn,rdn

)
, for n = 1, . . . , Nd . (6.18)

We note that each PYP distribution is parameterised by its own set of hyperpa-
rameters, that is, βθd differs for different document d. We present a list of variables
associated with TOTM in Table 6.2. Also note that by modelling the target–opinion
distribution explicitly, we have to store the information of the distribution for each
target in the data, which is very large. In our implementation, we adopt a sparse
representation for storing the counts associated with the target–opinion distributions.
We find that each target word is only described by a limited number of opinion words
in the data, which is less than 1 % of the words from the opinion word vocabulary.

In the next section, we propose a novel method to incorporate sentiment prior
information for opinion analysis. It makes use of external sentiment lexicon that is
publicly available.
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Table 6.2: List of Variables for the Twitter Opinion Topic Model (TOTM).

Variable Name Description

adn Aspect
Category label for target–opinion pair
〈wdn, odn〉; also known as topic.

rdn Sentiment Polarity of opinion phrase odn .

wdn Target
Observed target word or phrase that is
being described at position n in docu-
ment d.

odn Opinion Description of target wdn .

ed Emotion indicator
Binary variable indicating positive or
negative emotion in document d; can
be unobserved.

ψa Aspect–target distribution
Probability distribution in generating
target words for aspect a.

φ′tr Opinion word distribution
Probability distribution in generating
opinion words given target t and senti-
ment r.

φr Opinion word distribution Opinion prior for φ′tr .

φ∗r Opinion word distributions Opinion prior for φr .

θd
Document–aspect

distribution
Probability distribution in generating
aspects for document d.

γe Sentiment distribution
Probability distribution in generating
sentiments for emotion indicator e.

αN Discount Discount parameter for PYP N .

βN Concentration Concentration parameter for PYP N .

HN Base distribution Base distribution for PYP N .

6.6 Incorporating Sentiment Prior

He [2012] proposed a simple yet effective way to incorporate sentiment prior infor-
mation into LDA by directly modifying the Dirichlet prior based on available senti-
ment lexicons. Naming her model LDA-DP (LDA with Dirichlet Prior modified), she
replaces the topics in LDA by latent sentiment labels and allows the word priors to
be custom probability distributions. The generative process of LDA-DP is identical
to LDA and hence omitted.
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In LDA-DP, the word distribution φr is Dirichlet distributed with the parameter
αrλr , where λr is a vector of length |Vo|, and r ∈ {−1, 0, 1} is the sentiment label
corresponding to negative, neutral and positive sentiment, respectively.16 The λrv

is initialised to be 1/3, and subsequently updated if the sentiment lexicon contains
word v. In this case, λrv takes the value of 0.9 if the sentiment of word v matches r,
and takes the value of 0.05 otherwise:

λrv =

0.9 if Sentiment(v) = r

0.05 otherwise
, for v = 1, . . . , |Vo| . (6.19)

Motivated by this, but not wishing to be required to give the exact strength by
which the dictionary affects probabilities, we instead propose a novel formulation
that automatically learns and updates itself. We assume that a sentiment lexicon
is available and it provides sentiment scores for opinion words. Additionally, we
assume that the sentiment score Sv returned from the sentiment lexicon takes a neg-
ative value when v has a negative sentiment, a positive value when v has a positive
sentiment, and 0 when v is neutral.17

Sentiment lexicons that are freely available online include the SentiWordNet [Bac-
cianella et al., 2010], SentiStrength [Thelwall et al., 2010], MPQA Subjectivity lexicon
[Wilson et al., 2005] and others. SentiStrength is developed from MySpace18 text data
by the Statistical Cybermetrics Research Group from the University of Wolverhamp-
ton, UK. Since the SentiStrength lexicon is constructed for informal text, we use it to
extract sentiment information for TOTM. The sentiment score Sv from SentiStrenth
ranges from −5 to +5, which conforms to our assumption. We assume that Sv = 0
for unlisted words.

Additionally, we make use of the SentiWordNet 3.0 lexicon to evaluate TOTM.
SentiWordNet is built on WordNet [Fellbaum, 1998] by researchers from Italy. We
note that SentiStrength and SentiWordNet are developed independently by different
teams using different methods. Thus we claim it is fair and unbiased to use one
lexicon for training and the other one for evaluation.

Our formulation is as follows, we introduce a tunable parameter b that controls
the strength of the prior, and replace the prior φ∗r (in the context of TOTM) by

φ∗rv ∝ (1 + b)Xrv , (6.20)

where b > 0 and hence φ∗rv > 0. Here, Xrv is the score of word v for sentiment r,

16We redefined the original sentiment labels in He [2012] for consistency.
17We can simply normalise the score to conform to this assumption, when the assumption is not met.
18MySpace is a social networking website similar to Facebook.



64 Opinion Mining Using Hashtags, Emoticons and Sentiment Lexicon

which is defined as

Xrv =


Sv if r = 1 (positive)

−|Sv| if r = 0 (neutral)

−Sv if r = −1 (negative) .

(6.21)

Note that although there are multiple ways to formulate the prior, we choose the
above formulation due to its simplicity and intuitiveness. We can see that a positive
Xrv boosts the probability of word v while a negative Xrv diminishes it. Also, this
formulation ensures the positivity of the prior, which can be difficult to achieve if we
were to use other formulations such as a polynomial function.

Even though b is a tunable parameter, we do not need to manually tune it. We
propose a flexible way to learn the hyperparameter b from its posterior distribution,
thus relieving us from choosing the value for b, which can be difficult (the value
of b should depend on the sentiment scores of the lexicon). The learning of the
hyperparameter b is detailed in Section 6.7.2.

6.7 Inference Techniques

In this section, we first discuss the collapsed Gibbs sampler for TOTM, and continue
with the sampling procedure of the hyperparameters. We note that this inference
procedure is developed upon the learning method described in Section 5.4.

6.7.1 Collapsed Gibbs Sampling for TOTM

As discussed in Section 5.3, the key to Gibbs sampling with PYPs is to marginalise out
the probability vectors in the model and record the associated customer counts and
table counts. Here, we adopt the model representation in Section 5.3 and marginalise
out the variables θ, γ, ψ, φ′, φ, and φ∗. As previously defined, c denotes the customer
counts and t denotes the table counts.

The variables A, R, W, and O represent a collection of relevant variables, as men-
tioned in Section 1.4. We also denote Ξ as the set of all hyperparameters (including
b). The posterior likelihood of the model can be written — in terms of f (·) from
Equation (5.9) — as

p(A, R, T, C |W, O, Ξ) ∝

(
D

∏
d=1

f (θd)

)(
1

∏
r=−1

f (φr)

[ |Vw|
∏
w=1

f
(
φ′wr
)][ |Vo |

∏
v=1

(
φ∗rv
)tφr

v

])
(

∏
e∈{−1,1}

f (γe)
1

∏
u=−1

(qeu)
tγe
u

) A

∏
a=1

f (ψa)
|Vw|
∏
w=1

(
1
|Vw|

)tψa
w

 .

(6.22)
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As detailed in Section 5.4, the collapsed Gibbs sampler consists of decrementing
counts associated with a word, sampling the respective new latent values for the
word, and incrementing the respective counts. For TOTM, we alternatingly sample
a new aspect a and sentiment r. As before, the conditional posteriors are ratio of
the posterior likelihoods, which can further be simplified to a ratio of modularised
likelihoods like those in Equation (5.17).

The conditional posterior for aspect adn can be derived as

p(adn, T, C |A−dn, R, W, O, C−dn, T−dn, Ξ) =
p(A, R, T, C |W, O, Ξ)

p(A−dn, R, T−dn, C−dn |W, O, Ξ)
,

(6.23)

while the conditional posterior for sentiment rdn is

p(rdn, T, C |A, R−dn, W, O, C−dn, T−dn, Ξ) =
p(A, R, T, C |W, O, Ξ)

p(A, R−dn, T−dn, C−dn |W, O, Ξ)
.

(6.24)

Here, the superscript 2−dn indicates that the target–opinion pair 〈wdn, odn〉 and their
associated variables are removed from the respective sets.

6.7.2 Hyperparameter Sampling

During inference, we sample the hyperparameters of the PYP using an auxiliary vari-
able sampler [Teh, 2006a], for details, see Section 5.4.3. Moreover, we propose a novel
method to update the hyperparameter b, which controls the strength of the sentiment
prior. Instead of sampling the hyperparameter b (e.g., using the slice sampler [Neal,
2003]), we adopt an optimisation approach since the posterior of b is highly concen-
trated in a small region (thin-tailed). The posterior density is given by the following
equation, subject to a normalisation constant.

p(b | c) ∝ p(b)
1

∏
r=−1

|Vo |
∏
v=1

(
(1 + b)Xrv

∑i(1 + b)Xri

)crv

, (6.25)

where crv is the number of times an opinion word v is assigned a sentiment r,19 and
p(b) is the hyperprior of b. We assume a weak hyperprior for b, so

b ∼ Gamma(1, 1) , (6.26)

p(b) ∝ e−b . (6.27)

During inference, we update b to its maximum a posteriori probability estimate using
a gradient ascent algorithm. We optimise for its log posterior, l(b) := log p(b | c),

19In fact, crv is equal to tφr
v .
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Algorithm 6.1 Gradient Ascent Optimisation for Hyperparameter b

1. Given an initial value for b = b0 , evaluate the gradient l′(b0).

2. Given a learning rate τ, update b to bi = bi−1 + τ × l′(bi−1), if the new log
posterior l(bi) is lower than l(bi−1), we halve the learning rate: τ := τ/2 .

3. Repeat Step 2 until b converges.

Algorithm 6.2 Collapsed Gibbs Sampling for TOTM

1. Initialise the model by assigning a random aspect to each target–opinion pair,
sampling the sentiment label, and building the relevant customer counts cNk
and table counts tNk for all PYP N .

2. For each document d, and

(a) For each target phrase wdn , perform the following:

i. Decrement counts associated with wdn .
ii. Sample a new aspect adn and corresponding customer counts and table

counts from Equation (6.23).
iii. Increment the associated counts for the new adn .

(b) For each opinion phrase odn , perform the following:

i. Decrement counts associated with odn .
ii. Sample a new sentiment rdn and corresponding customer counts and

table counts from Equation (6.24).
iii. Increment the associated counts for the new rdn .

3. Update the hyperparameters β and b.

4. Repeat Steps 2 – 3 until the model converges or when a fixed number of itera-
tions is reached.

since log is an increasing function. The gradient of the log posterior is derived as

l′(b) =
1

1 + b

1

∑
r=−1

|Vo |
∑
v=1

crv
(
Xrv −Eφ∗r [Xr]

)
+ ρ′(b) , (6.28)

where Eφ∗r [Xr] is the expected value of Xr under the probability distribution φ∗r , and
ρ′(b) is the derivative of log p(b). We summarise the gradient ascent algorithm in
Algorithm 6.1. We refer the reader to Appendix A.1 for the gradient derivation.

We summarise the collapsed Gibbs sampler in Algorithm 6.2. In the next section,
we describe the data used for evaluating the TOTM.



§6.8 Data 67

Table 6.3: Keywords for querying the electronic product dataset. Note that some
keywords are listed in multiple categories as they are not mutually exclusive.

Categories Query Words

Mobile phones
iphone, blackberry, nokia, palmpre, sony, motorola, phone,
samsung, lg, scanner, android, ios, apple

Computers

sony, dell, lenovo, toshiba, acer, asus, macbook, hp, alien-
ware, laptop, tablet, netbook, ipad, ipod, printer, panasonic,
epson, samsung, ibm, sony, microsoft, computer, windows,
operatingsystem, apple

Cameras
sony, canon, nikon, camera, panasonic, epson, samsung, lg,
fujitsu, kodak

Printers/
Scanners

sony, canon, nikon, dell, lenovo, toshiba, hp, printer, pana-
sonic, epson, samsung, kyocera, lg, scanner, kodak

Gaming xbox, playstation, wii, nintendo, gameboy, sega, squareenix

6.8 Data

For experiments, we perform aspect-based opinion analysis on tweets, which are
characterised by their limited 140 characters text. From the Twitter 7 dataset20 [Yang
and Leskovec, 2011], we queried for tweets that are related to electronic products
such as camera and mobile phones (see the list of the query words in Table 6.3). We
then remove non-English tweets with langid.py [Lui and Baldwin, 2012]. Moreover,
since most spam tweets contain a URL, we adopt a conservative approach to remove
spam by discarding tweets containing URLs. This results in a dataset of about 9
million tweets, which we name as the electronic product dataset.

Due to the lack of sentiment labels on the electronic product dataset, we make
use of the Sentiment140 (Sent140) tweets21 [Go et al., 2009] for sentiment classifica-
tion. Each Sent140 tweet contains a sentiment label (positive or negative) that are
determined by emoticons. The whole corpus contains 1.6 million tweets, with half of
them labelled as positive and the other half as negative.

In addition, we also use the SemEval 2013 dataset22 [Nakov et al., 2013] for eval-
uation. SemEval tweets are annotated on Mechanical Turk, which arguably provides
better sentiment labels compared to Sent140. Since annotation is expensive, SemEval
has only 6,322 tweets.

20http://snap.stanford.edu/data/twitter7.html (last accessed 11 June 2014)
21http://help.sentiment140.com/home (last accessed 11 June 2014)
22http://www.cs.york.ac.uk/semeval-2013/task2/ (last accessed 11 June 2014)

http://snap.stanford.edu/data/twitter7.html
http://help.sentiment140.com/home
http://www.cs.york.ac.uk/semeval-2013/task2/
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6.8.1 Data Preprocessing

Here, we describe the preprocessing steps that we apply to tweets. Firstly, we apply
Twitter NLP [Owoputi et al., 2013], a state-of-the-art tool for part-of-speech (POS)
tagging on tweets. We then apply word normalisation to clean up the tweets. We
make use of the lexical normalisation dictionary23 from Han et al. [2012], but modify
it such that proper nouns are not normalised. For instance, words like ‘iphone’
and ‘xbox’ are not normalised, since they are the targets we are interested in. We
perform normalisation after POS tagging since tweets normalisation degrades the
performance of Twitter NLP [Han et al., 2013].

Next, we proceed to extract target–opinion pairs from the datasets. Following
Moghaddam and Ester [2012], we apply the Stanford Dependency Parser [De Marn-
effe et al., 2006] to extract the dependency relations that will be used to form the
target–opinion pairs. However, our approach is slightly different: we do not use the
Direct Object (dobj) relation to obtain a target–opinion pair. For example, the sentence
“I like the perfect picture quality” gives ‘dobj(like, picture quality)’ and ‘amod(picture
quality, perfect)’, resulting in two target–opinion pairs, 〈picture quality, like〉 and
〈picture quality, perfect〉. We drop the target–opinion pair associated with dobj as it is
not suitable for target–opinion pair, instead, we use the dobj relation for the emotion
indicator variable. Note that we use the caseless English model in the Stanford Depen-
dency Parser, which works better for tweets. Additionally, since standard NLP tools
perform less optimally on tweets [Ritter et al., 2011], we use the POS tagging from
Twitter NLP to clean up the target–opinion pairs. We note that negations like ‘not’
are captured as dependency relations, the negated words are then treated as new
words with the prefix ‘not_’.

We determine the emotion indicator variable via the existence of emoticons, strong
sentiment words and/or the dobj relations in each tweet. We simply set the emo-
tion indicator to −1 (negative) or 1 (positive) as long as the indicators agree with
one another, and unobserved otherwise. The list of emoticons is compiled from
Wikipedia.24 The emoticons and strong sentiment words are presented in Table 6.1.
For Sent140 and SemEval tweets, we replace the unobserved emotion indicator by
their sentiment label.

We then perform tweet aggregation, which is found to provide significant im-
provement for LDA [Mehrotra et al., 2013]. We group tweets that contain the same
hashtag (word prefixed with # symbol) or same mention (word prefixed with @ sym-
bol) into a single document. This allows co-occurrence within the same tags (our
abbreviation for hashtags and mention) to be used by topic models.25 Grouping
tweets also allows us to summarise the results for each tag, giving us a better opin-

23http://people.eng.unimelb.edu.au/tbaldwin/#resources (last accessed 11 June 2014)
24http://en.wikipedia.org/wiki/Kaomoji and http://en.wikipedia.org/wiki/List_of_emoticons (last ac-

cessed 11 June 2014)
25Tweets with multiple tags are replicated into multiple pseudo documents.

http://people.eng.unimelb.edu.au/tbaldwin/#resources
http://en.wikipedia.org/wiki/Kaomoji
http://en.wikipedia.org/wiki/List_of_emoticons
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Tweets

Part of Speech Tagging Normalisation Database

Normalisation

Twitter NLP

Stanford Dependency Parser

Target-opinion Extraction, 
Emotion Indicator Extraction

Processed Tweets

Hashtag Aggregation, 
Remove Infrequent Tags

Decapitalise, Remove Stop Words, 
Common Words and Infrequent Words

Figure 6.3: Preprocessing pipeline for tweets.

ion overview (see Section 6.9.3 for examples). Additionally, we discard tags that
occur infrequently. We note that although tweets are merged to form a larger docu-
ment, the emotion indicator (variable e) is observed and stored for each individual
tweet (rather than the merged document). This prevents the emotion indicator from
being lost through merging.

Finally, we perform other standard preprocessing techniques to topic modelling,
this consists of decapitalising the words, removing stop words26 and discarding com-
monly occurred words and infrequent words. For example, we define the common
words as words that appear in at least 90 % of the documents, and infrequent words
as words that appear less than 50 times in the corpus. We randomly split the data into
90 % training set and 10 % test set for evaluation. A summary of the preprocessing
pipeline is displayed in Figure 6.3.

26The stop words list is obtained from MALLET [McCallum, 2002].
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Table 6.4: Corpus Statistics for the Electronic Product, Sent140 and SemEval tweets,
showing the number of tweets, the number of target–opinion pairs extracted per
tweet, proportion of tweets with observed emotion indicator, the size of target word
vocabulary, and the size of opinion word vocabulary.

Electronic Product Sent140 SemEval

Number of tweets ∼9M 1.6M 6322
Target–opinion pairs per tweet 0.69 0.41 0.47
Percentage of tweets with observed e 17.9 100 57.5
Target vocabulary size (|Vw|) 4402 1050 1875
Opinion vocabulary size (|Vo|) 25188 8599 813

6.8.2 Corpus Statistics

On average, we found that there are 0.69 target–opinion pair extracted per electronic
product tweet. Out of the electronic product tweets that contain at least one target–
opinion pair, 17.9 % of them contain an emotion indicator. After preprocessing, the
number of unique target word tokens in the electronic product tweets is 4,402, while
the number of unique opinion word tokens is 25,188. We present a summary of the
corpus statistics for all datasets in Table 6.4.

For the electronic product tweets, the top tags are #apple, #phone, #iphone, #com-
puter, and #laptop. We note that tags are associated with products, brands or com-
panies. For example, #playstation and #xbox are associated with gaming products,
while #sony and #canon are associated with companies. In Section 6.9.3, we show
that aggregating hashtags allows us to have a more focussed view on certain products
or companies, as well as facilitating comparison between these products or compa-
nies side-by-side.

6.9 Experiments and Results

In this section, we demonstrate the usefulness of TOTM for opinion mining. We
evaluate TOTM quantitatively against ILDA and LDA-DP in terms of goodness-of-fit
and sentiment classification. To compare the effectiveness of various sentiment lex-
icons, we propose a novel sentiment metric to evaluate the sentiment–opinion word
distributions φ. Qualitatively, we employ TOTM for the task of opinion mining from
the electronic product tweets, and demonstrate that we are able to extract various
useful opinions on technological products such as the iPhone. Note that we do not
compare against other models such as MG-LDA and ASUM, since these models do
not perform target-based opinion analysis, and thus not directly comparable.
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6.9.1 Experiment Settings

For all the experiments, we initialise the hyperparameters of PYP to α = 0.7 and
β = 0.1. The discount of 0.7 is chosen to induce power-law behaviour on the word
distributions. For the sentiment hyperparameter b, we initialise it to b = 10 as we find
that this starting value works well. Note that these hyperparameters are optimised
automatically as discussed in Section 6.7.2.

To determine the optimal number of latent aspects (A) for ILDA, we set aside 5 %
of the training data as development set, and select A (tested in increment of 10) such
that perplexity of the development set is minimised. For a fair comparison between
TOTM and ILDA, we cap the maximum number of aspects of TOTM to be that of
ILDA. Our experiment finds that the number of aspects in TOTM always converges
to the cap. We note that LDA-DP has only three fixed ‘topics’, which is the number
of sentiments.

During inference, we run the collapsed Gibbs sampling algorithm until the con-
vergence criteria is satisfied, defined by which the training log likelihood not dif-
fering by more than 0.1 % in ten consecutive iterations. Empirically, we find that
all experiments converge within 500 iterations, indicating a good Gibbs sampling
algorithm. We refer the readers to Section 6.10.1 for a more detailed discussion on
analysing convergence.

6.9.2 Quantitative Evaluations

Here we present the quantitative results of TOTM on model fitting and sentiment
classification, comparing against ILDA and LDA-DP. Additionally, we also test the
effectiveness of the sentiment lexicons through the sentiment prior evaluation.

6.9.2.1 Goodness-of-fit Test

As discussed in Section 5.5.2, we compute the perplexity of the test set to measure
how well the model fits the data. Since aspect-based opinion analysis deals with two
types of vocabulary, we compute the perplexity for both target words W and opinion
words O, in this case:

perplexity(W | θ, ψ) = exp

(
− ∑D

d=1 ∑Nd
n=1 log p(wdn | θd, ψ)

∑D
d=1 Nd

)
, (6.29)

perplexity(O |W, E, γ, φ′) = exp

(
− ∑D

d=1 ∑Nd
n=1 log p(odn |wdn, ed, γ, φ′)

∑D
d=1 Nd

)
, (6.30)

noting that Nd is the number of the target–opinion pairs in document d. We also
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Table 6.5: Perplexity results on all datasets. The TOTM achieves significant (at 5 %
significance level) perplexity reduction on the opinion words, leading to overall per-
plexity reduction. We note that the lower the perplexity, the better the model fitting,
as discussed in Section 5.5.2.

Dataset Models
Target Opinion Overall

Perplexity Perplexity Perplexity

Electronic Product
LDA-DP N/A 510.15± 0.08 N/A

ILDA 594.81± 13.61 519.84± 0.43 556.03± 6.22

TOTM 592.91± 13.86 137.42 ± 0.28 285.42 ± 3.23

Sent140
LDA-DP N/A 329.92± 16.58 N/A

ILDA 567.22± 16.31 306.79± 0.15 417.12± 6.12

TOTM 530.08± 5.23 93.89 ± 0.41 223.09 ± 0.63

SemEval
LDA-DP N/A 688.54± 62.17 N/A

ILDA 2695.39± 65.33 433.20± 1.50 1080.51± 13.75

TOTM 2725.51± 71.88 249.04 ± 4.09 823.74 ± 7.68

compute the overall perplexity, which is given by

perplexity(W, O | θ, E, γ, ψ, φ′) = exp

(
− ∑D

d=1 ∑Nd
n=1 log p(wdn, odn | θ, ed, γ, ψ, φ′)

2 ∑D
d=1 Nd

)
.

(6.31)

We present the perplexity result (the lower the better) for the electronic product,
Sent140, and SemEval tweets in Table 6.5. From the perplexity results, it is clear
that modelling the target–opinion pairs directly leads to significant improvement on
opinion words perplexity and hence the overall perplexity. Note that LDA-DP only
models the opinion words, thus we can only compare the perplexity for opinion
words, we can see that its result is comparable to that of ILDA.

6.9.2.2 Sentiment Classification

Here, we perform a classification task to predict the polarity of the test data for
Sent140 and SemEval tweets. We determine the polarity of a test document d simply
by selecting the polarity r that is more probable (higher likelihood):

polarity(d) = arg max
r={−1,1}

Nd

∏
n=1

φr,odn . (6.32)

For simplicity, the sentiment classification is a binary classification task, as such,
we do not include neutral tweets from SemEval data during evaluation. Note that
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Table 6.6: Sentiment classification results for Sent140 and SemEval tweets. We can
see that TOTM outperforms ILDA and LDA-DP on all aspects. Here, the results are
between 0 and 100, with larger values indicating better performance.

Dataset Models Accuracy [%] Precision [%] Recall [%] F measure [%]

Sent140
LDA-DP 57.3 56.1 90.1 69.2
ILDA 54.1 56.9 55.3 55.9
TOTM 65.0 61.7 90.2 73.3

SemEval
LDA-DP 52.1 65.0 58.3 61.4
ILDA 46.8 60.7 53.6 56.3
TOTM 73.3 84.0 74.9 79.0

Sent140 data does not have neutral tweets.
We present the classification accuracy, precision, recall and the F measure [Suominen

et al., 2008] in Table 6.6. We can see that TOTM outperforms LDA-DP and ILDA
on both datasets, suggesting that our prior formulation is more appropriate than
that of LDA-DP. We can also see that LDA-DP gives a better sentiment classification
compared to ILDA, which does not incorporate any prior information. Note that the
classification result for SemEval data is better than that of Sent140. We conjecture
that this is because the sentiment labels in Sent140 are obtained from the emoticons,
which are noisy in nature; while the sentiment labels for SemEval data is annotated,
thus can be predicted more accurately.

6.9.2.3 Evaluating the Sentiment Prior

We propose a novel method to evaluate the learned sentiment–opinion word distri-
butions φ by using another sentiment lexicon. We use the SentiWordNet lexicon for
evaluation, noting that the lexicon used during training is the SentiStrength lexicon.

Unlike SentiStrength, the SentiWordNet lexicon provides two values for each
word. We name them the positive affinity Z+

v and negative affinity Z−v for a given
word v, they ranged from 0 to 1. For example, the word ‘active’ has a positive affinity
of 0.5 and a negative affinity of 0.125; while ‘supreme’ has a positive affinity of 0.75
and a negative affinity of 0.

Given the affinities, we propose the following sentiment score to evaluate the
opinion word distributions:

Score(φr, Z) = Eφr [Z] =
|Vo |
∑
v=1

Zv φrv , (6.33)

where Z can either be Z+ or Z−, the positive or negative affinity. Note the sentiment
score is also the expected sentiment under the opinion word distribution.
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Table 6.7: Sentiment Evaluations for the Sentiment Priors (in unit of 0.01). The
results, where the higher the better, suggest that incorporating sentiment prior into
modelling is important.

Dataset Lexicon Negative Affinity Positive Affinity

Electronic
No lexicon 17.82± 1.26 17.39± 0.45

MPQA 23.91 ± 0.49 31.96± 0.09

SentiStrength 23.19± 0.08 35.69 ± 0.33

Sent140
No lexicon 22.63± 0.96 32.31± 1.98

MPQA 24.10± 0.49 42.65 ± 1.02

SentiStrength 24.29 ± 1.07 41.26± 1.53

SemEval
No lexicon 15.24± 1.45 21.03± 3.85

MPQA 16.88± 0.31 29.47± 0.99

SentiStrength 16.94 ± 0.78 32.17 ± 2.07

Here, we evaluate φ−1 with negative affinity Z− and φ1 with positive affinity Z+.
We compare the sentiment scores between the cases when a sentiment lexicon is used
and when it is not. Additionally, we also make use of the MPQA Subjectivity lexicon
for sentiment prior (during training) and compare the sentiment evaluation against
the SentiStrength lexicon. We present the result in Table 6.7. As we can see, it is clear
that incorporating prior information results in huge improvement in the sentiment
score. Also, the priors for SentiStrength are slightly better than MPQA, on average.
We note that optimising the hyperparameter b is very important, as it relieves us
from tuning the hyperparameter manually. To illustrate, the optimised b converges
to 2.59 on the electronic product tweets, while on Sent140 and SemEval dataset, the b
converges to 1.85 and 0.71 respectively. We also find that, in our tests, an incorrectly
chosen b can lead to a bad result.

6.9.3 Qualitative Analysis and Applications

In addition to quantitative evaluations, qualitative analysis is important too in as-
sessing topic models. Here, we examine the quality of the learned distributions and
demonstrate the usefulness of TOTM on opinion mining.

6.9.3.1 Analysing Word Distributions

First, we inspect the clustering of target words by the TOTM and the ILDA, noting
that the LDA-DP does not model the target words. As mentioned in Section 5.5.3,
the Hellinger distance is commonly used to measure the dissimilarity between two
probability distributions. We calculate the pairwise Hellinger distance between each
aspect–target word distribution and found that the aspects are distinctive. The
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Table 6.8: Top target words for the electronic product tweets learned by TOTM. The
aspect labels are manually assigned based on the target words. We find that the top
target words form coherent topics for each aspect.

Aspect (a) Target Words (w)

Camera camera, pictures, video camera, shots
Apple iPod ipod, ipod touch, songs, song, music

Android phone android, apps, app, phones, keyboard
Macbook macbook, macbook pro, macbook air

Nintendo games nintendo, games, game, gameboy

(a) Heat Map (b) Legend

Figure 6.4: Pairwise Hellinger distances for the 50 aspect–target word distributions
learned by TOTM on the electronic product tweets. The heat map shows that most
of the pairwise Hellinger distances are high, indicating that the aspects are distinct.

Hellinger distances between all pairs of aspect–target word distributions from the
TOTM are displayed as a heat map in Figure 6.4, we can see that the distances be-
tween the aspects are high, indicating that there is no duplicated aspect. We note
that the heat map for the ILDA is similar and hence not presented here. In Table 6.8,
we display an extract of the top target words which are learned by the TOTM from
the electronic product tweets. Our empirical examination on the aspect–target word
distributions suggest that both the TOTM and the ILDA perform well in clustering
the target words.

We then look at the opinion word distributions. In ILDA and LDA-DP, the opin-
ion words are generated conditioned on the latent sentiment labels, meaning that the
opinion word is assumed to be independent to the target word given the sentiment;
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Table 6.9: Opinion analysis of target words with TOTM on the electronic product
tweets. Words in bold are more specific and can only describe certain targets. Here,
we use red colour for positive sentiment and blue colour for negative sentiment.

Target (w) Sentiment (r) Opinions (o)

phone
+1 mobile smart good great f***ing
−1 dead damn stupid bad crazy

battery life
+1 good long great 7hr ultralong
−1 terrible poor bad horrible non-existence

game
+1 great good awesome favorite cat-and-mouse
−1 addictive stupid free full addicting

sausage
+1 hot grilled good sweet awesome
−1 silly argentinian cold huge stupid

while in TOTM, the opinion word distributions are modelled given the sentiment
and the observed target word. The advantage of TOTM over ILDA and LDA-DP in
modelling the opinion words is that it allows us to analyse the opinions in a finer
grained view. For instance, we can display a list of positive and negative opinions
associated to a certain target word; an extract of this result is presented in Table 6.9,
in which we pick a few distinctive target words to show their opinion word distri-
butions. As we can see from Table 6.9, despite some opinion words can generally
be applied to most target words (e.g., good, bad), the highlighted words are more
descriptive (e.g., addictive, fried, grilled) and can only be applied to certain target
words. Such result cannot be achieved with ILDA or LDA-DP.

6.9.3.2 Comparing Opinions on Brands with TOTM

We present an application of comparing opinions on entities or products using the
TOTM. Since entities and products are frequently quoted with tags, we can compare
them directly by looking at the opinions associated with each tag.

We present an extract of the opinion comparison between three brands (Canon,
Sony and Samsung) in Table 6.10. It shows that we can have a high level comparison
of the camera product between these three brands. For the phone product, there are
only comparison between Sony and Samsung, since Canon does not manufacture
phones (or no tweet on such topic is found).

6.9.3.3 Extracting Contrastive Opinions on Products

Although the above comparison is useful for providing a high level summary, it
is also important to inspect the original tweets as they provide opinions in greater
details. We use the TOTM to extract tweets containing people’s opinions on iPhone.
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Table 6.10: Aspect-based opinion comparison between Sony, Canon and Samsung.
This extract shows two common aspects of the three brands, namely “camera” and
“phone”. The comparison allows us to quickly view the opinions of Twitter users
on their products. Again, positive sentiment is shown in red while the negative is in
blue colour.

Brands Sentiment
Aspects / Targets’ Opinions

Camera Phone

Canon
+1

camera→ great compact amazing
pictures→ great nice creative

−1
camera→ expensive small bad
lens→ prime cheap broken

Sony
+1

photos→ great lovely amazing phone→ great smart beautiful
camera→ good great nice reception→ perfect

−1
camera→ big crappy defective phone→ worst crappy shittest
lens→ vertical cheap wide battery life→ low

Samsung
+1

camera→ gorgeous great cool phone→ mobile great nice
pics→ nice great perfect service→ good sweet friendly

−1
camera→ digital free crazy phone→ stupid bad fake
shots→ quick wide battery life→ solid poor terrible

In Table 6.11, we display an extract of contrasting tweets containing the target
‘iphone’ with positive (r = 1) or negative (r = −1) sentiment. The advantage of the
TOTM over the other methods is that the positive and negative opinions are directed
toward the targets. For instance, the TOTM correctly identifies the sentiment of
iPhone on the following tweet, thanks to the use of the dependency parser: “Ah, well
there you go. The iPhone is dead, long live Android!”

6.10 Diagnostics

In this section, we perform some diagnostic tests to assess the inference algorithm
of the TOTM. In particular, we look at the training log likelihood during learning
to make sure the learned model converges. We also inspect the posterior of the
hyperparameter b to verify that the gradient ascent algorithm is working properly.

6.10.1 Convergence Analysis of the Collapsed Gibbs Sampler

It is important to assess the convergence of an MCMC algorithm to avoid premature
termination of the algorithm. As mentioned, we say an algorithm has converged
when the training log likelihood, p(W, O |A, R, ψ, φ′), do not change by more than
0.5 % in ten consecutive iterations. In Table 6.5, we display the training log likelihood
for the TOTM trained on the Electronic dataset. The plot shows that the collapsed
Gibbs sampler converges within 500 iterations.
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Table 6.11: Contrasting opinions on iPhones. For privacy reason we censor the user-
names with a placeholder “@user”.

Positive Opinion Negative Opinion

RT @user : the iPhone is so awesome!!!
Emailing, texting, surfing the sametime! —
Can do all tgat while talkin on the phone?...

@user awww thx! I can’t send an email
right now bc my iPhone is stupid with
sending emails. Lol but I can tweet or dm
u?

Ahhh! Tweeting on my gorgeous iPhone! I
missed you! hehe am on my way home, put
the kettle on will you pls : )

It would appear that the iPhone, due to con-
struction, is weak at holding signal. Com-
bine that with a bullshit 3G network in Den-
ver.

Thanks @user for the link to iPhone vs
Blackberry debate. I got the iPhone & it’s
just magic! So intuitive!

@user @user Ah, well there you go. The
iPhone is dead, long live Android! ;)

Finally my fave lover @user has Twitter &
will be using it all the time with her cool
new iPhone :)

@user Finally eh? :D I think iphone is so
ugly x.x
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Figure 6.5: Convergence analysis for the TOTM. The plot shows that the training log
likelihood p(W, O |A, R, ψ, φ′) increases quickly initially, and then converges.

6.10.2 Inspecting the Posterior of the Sentiment Hyperparameter

The hyperparameter b was introduced to control the strength of the prior information
from the sentiment lexicon. Instead of manually tuning the hyperparameter, we have
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Figure 6.6: The log posteriors of the hyperparameter b corresponds to different values
of crv and Xrv during the inference procedure. The log posteriors are scaled so they
can be shown in the same plot. The plot shows that the posteriors are unimodal and
thus can easily be optimised with a gradient ascent algorithm.

introduced a gradient ascent algorithm to automatically learn the hyperparameter.
Here, we look at the log posterior of the hyperparameter b given various statistics
crv from obtained during the inference algorithm. We present the plot in Figure 6.6,
the log likelihood curves are scaled such that they all fit in the same plot. From
Figure 6.6, we see that the log posterior for b is unimodal. Thus, we are assured that
the gradient ascent algorithm will be able to find the optimal b.

6.11 Summary

In this chapter, we study the use of a nonparametric Bayesian topic model for opin-
ion analysis on tweets, focussing on a tweet corpus queried with electronic product
terms. This is motivated by the fact that Twitter is a popular platform for opinions
and that tweets are publicly available. Unlike reviews, tweets do not contain scores or
ratings, they are more informal and usually accompanied by emoticons and strong
sentiment words. Taking advantage of the informal nature of tweets, we design a
topic model named TOTM for opinion analysis. The TOTM is shown to greatly im-
prove opinion prediction with a direct target–opinion modelling. In incorporating
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a sentiment lexicon into topic models, we propose a new formulation for the topic
model priors, which learns and updates itself given data. Our innovative formulation
is shown to improve sentiment analysis significantly.

Our qualitative analysis demonstrates that opinion mining on tweets provide use-
ful opinions on electronic products. Note that although we can obtain a large quan-
tity of product opinions on tweets, the opinions are usually much noisier than that of
the reviews. For instance, opinions can be incidental (e.g., the user was just frustrated
with the product at that time), since it is easy and effortless to produce a tweet. As
with the reviews, the opinions on tweets may not always be true. Some tweets are
laden with sarcasm, making them difficult to interpret, while some others are spam
containing no useful information. Additionally, be aware that the opinions extracted
from Twitter do not represent the public opinions since not everyone use Twitter.

We emphasise the importance of the preprocessing steps. For instance, word nor-
malisation allows misspellings and abbreviations to be captured for target–opinion
analysis; tweet aggregation improves aspect clustering and lets us compare different
products or brands. For practical applications, filtering sarcastic tweets and spam is
also important. In this chapter, we have attempted to filter spam by removing tweets
containing URLs. We acknowledge that although there is existing work on removing
sarcastic tweets and spam [Tsur et al., 2010; McCord and Chuah, 2011], we did not
incorporate them due to the lack of publicly available software.

Future work on this area includes the incorporation other word lexicons, such as
synonym and antonym lexicons, into topic models for sentiment analysis. In the next
chapter, we will move away from sentiment analysis and focus on developing a topic
model for bibliographic analysis, particularly on research publications.



Chapter 7

Bibliographic Analysis on Research
Publications using Authors and
Citation Network

Bibliographic analysis considers the author’s research areas, the citation network and
the paper content among other things. In this chapter, we combine these three in a
topic model that produces a bibliographic model of authors, topics and documents,
using a nonparametric extension of a combination of the Poisson mixed-topic link
model and the author-topic model. This gives rise to the Citation Network Topic
Model (CNTM). We propose a novel and efficient inference algorithm for the CNTM
to explore subsets of research publications from CiteSeerX. Our model demonstrates
improved performance in both model fitting and a clustering task compared to sev-
eral baselines. Additionally, we propose a simple method to incorporate supervision
into topic modelling to achieve further improvement on the clustering task. This
chapter is an extension of Lim and Buntine [2014a].

7.1 Introduction

Models of bibliographic data need to consider many kinds of information. Articles
are usually accompanied by metadata, such as authors, publishers, categories, and
time. Cited papers can also be available. When authors’ topic preferences are mod-
elled, we need to associate the document topic information somehow with the au-
thors. Jointly modelling text data with citation network information can be challeng-
ing, and the problem is confounded when also modelling author–topic relationships.

In this chapter, we propose a topic model to jointly model authors’ topic pref-
erences, text content27 and the citation network. The model is a nonparametric ex-
tension of previous models discussed in Section 7.2. Using simple assumptions and
approximations, we derive a novel algorithm that allows the probability vectors in the
model to be integrated out; this gives an MCMC inference via discrete sampling. Ad-

27Abstract and publication title.
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ditionally, we propose a fully supervised approach into topic modelling to improve
document clustering, by making use of categorical information that is available. As
applications, we employ the CNTM for document clustering and extraction of topical
summary from the clusters. In addition, we perform qualitative analysis to further
investigate the authors’ research areas and visualise the author–topics network.

The rest of this chapter is organised as follows. Sections 7.3, 7.4 and 7.5 detail the
CNTM and its inference algorithm. We describe the datasets used in Section 7.6 and
report on the experiments in Section 7.7. Applying our model on research publication
data, we demonstrate the improved performance of the model, on both model fitting
and a clustering task, compared to several baselines. In Section 7.8, we analyse
the inference results produced by the CNTM qualitatively. We find that the learned
topics have high comprehensibility. Additionally, we present a visualisation snapshot
of the learned topic models. Finally, we perform diagnostic assessment of our topic
models in Section 7.9 and summarise this chapter in Section 7.10.

7.2 Related Work

As demonstrated by the previous chapter, variants of LDA allow incorporating more
aspects of a particular task; here we consider authorship and citation information.
The author-topic model (ATM) [Rosen-Zvi et al., 2004] uses the authorship informa-
tion to restrict topic options based on the author. Some recent work jointly models
the document citation network and text content. This includes the relational topic
model [Chang and Blei, 2010], the Poisson mixed-topic link model (PMTLM) [Zhu et al.,
2013] and Link-PLSA-LDA [Nallapati et al., 2008]. An extensive review of these mod-
els can be found in Zhu et al. [2013]. The Citation Author Topic (CAT) model [Tu et al.,
2010] models the author-author network on publications based on citations using an
extension of the ATM. Note that our work is different to CAT in that we model the
author-document-citation network instead of the author-author network.

The Topic-Link LDA [Liu et al., 2009] jointly models author and text by using the
distance between the document and author topic vectors. Similarly the Twitter Net-
work topic model that will be discussed in next chapter models the author network28

based on author topic distributions, but using a Gaussian process to model the net-
work. Note that our work considers the author-document-citation of Liu et al. [2009].
We use the PMTLM of Zhu et al. [2013] to model the network, which lets one integrate
PYP hierarchies with the PMTLM using efficient MCMC sampling.

There is also existing work on analysing the degree of authors’ influence. On
publication data, Kataria et al. [2011] and Mimno and McCallum [2007] analyse in-
fluential authors with topic models. While Weng et al. [2010], Tang et al. [2009] and
Liu et al. [2010] use topic models to analyse users’ influence on social media.

28The author network here corresponds to the Twitter follower network.
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Figure 7.1: Graphical model for the Citation Network Topic Model (CNTM). The
shaded nodes represent observed variables while the unshaded nodes are latent. The
box on the top left with D2 entries is the citation network on documents represented
as a Boolean matrix. The remainder is a nonparametric author-topic model where the
A authors on the left have topic distributions that influence the D document–topic
distributions. The K topics, shown in the top right, have bursty modelling following
Buntine and Mishra [2014].

7.3 Citation Network Topic Model

In this section, we propose a topic model that jointly model the text, authors, and the
citation network of research publications (documents). We name the topic model the
Citation Network Topic Model (CNTM). We first describe the topic model part of the
CNTM where the citations are not considered, which will be used for comparison
later in Section 7.7. We then complete the CNTM with the discussion on its network
component. Additionally, we propose a novel approach to incorporate supervision
into CNTM, which is detailed in Section 7.3.3. The full graphical model for CNTM
is displayed in Figure 7.1.

7.3.1 Hierarchical Pitman-Yor Process Topic Model

In modelling authorship, the CNTM modifies the approach of the ATM, which as-
sumes that the words in a publication are equally attributed to the different authors.
This is not reflected in practice since publications are often mainly written by the
first author, except when the order is alphabetical. Thus, we assume that the first
author is dominant and attribute all the words in a publication to the first author.
Although we could model the contribution of each author on a publication by, say,
using a Dirichlet distribution, we found that considering only the first author gives a
simpler learning algorithm and cleaner results.

The generation process of the topic model component of the CNTM is as follows.
We first sample a root topic distribution µ with a GEM distribution to act as a base
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distribution for the author–topic distributions νa for each author a, as follows:

µ ∼ GEM(αµ, βµ) , (7.1)

νa | µ ∼ PYP(ανa , βνa , µ) , for a = 1, . . . , A . (7.2)

Given the first author ad of each publication d, we sample the document–topic prior θ′d
and the document–topic distribution θd , as the following:

θ′d | ad, ν ∼ PYP(αθ′d , βθ′d , νad) , (7.3)

θd | θ′d ∼ PYP(αθd , βθd , θ′d) , for d = 1, . . . , D . (7.4)

Note that instead of modelling a single document–topic distribution, we model a
document–topic hierarchy with θ′ and θ. The primed θ′ represents the topics of the
document in the context of the citation network. The unprimed θ represents the
topics of the text, naturally related to θ′ but not the same. Such modelling gives
citation information a higher impact, taking into account the relatively low amount
of citations compared to the text. The technical details on the effect of such modelling
is presented in Section 7.9.2.

On the vocabulary side, we generate a background word distribution γ given Hγ,
a discrete uniform vector of length |V|, that is, Hγ = (. . . , 1

|V| , . . . ). The symbol V
denotes the set of distinct word tokens observed in a corpus. Then, we sample a
topic–word distribution φk for each topic k, with γ as the base distribution. This is
illustrated by

γ ∼ PYP(αγ, βγ, Hγ) , (7.5)

φk | γ ∼ PYP(αφk , βφk , γ) , for k = 1, . . . , K . (7.6)

Modelling word burstiness is important since words in a document are likely to
repeat in the document [Buntine and Mishra, 2014]. The same applies to publication
abstract, as illustrated by Table 7.2 in Section 7.6. To address this property, we make
the topics bursty so each document only focusses on a subset of words in the topic.
This is achieved by defining the φ′dk for each topic k in document d as

φ′dk | φk ∼ PYP(αφ′dk , βφ′dk , φk) . (7.7)

Finally, for each word wdn in document d, we sample the corresponding topic
assignment zdn from the document–topic distribution θd; while the word wdn is sam-
pled from the topic–word distribution φ′d given zdn , that is,

zdn | θd ∼ Discrete(θd) , (7.8)

wdn | zdn, φ′d ∼ Discrete(φ′dzdn
) , for n = 1, . . . , Nd . (7.9)
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Note that w includes words from the title and the abstract of the publications, but
not the full article. This is because title and abstract provide a good summary of the
topics of a given publication and thus more suited for topic modelling, while the full
article might contain too much technical details that are not too relevant.

In the next section, we carry through to the modelling of the citation network
accompanying a publication collections. This completes the CNTM.

7.3.2 Citation Network Poisson Model

To model the citation network between publications, we assume that the citations are
generated conditioned on the topic distributions of the publications. Our approach
is motivated by the degree-corrected variant of PMTLM [Zhu et al., 2013]. Denoting
xij as the number of times document i citing document j, we model xij with a Poisson
distribution with mean parameter λij , namely,

xij | λij ∼ Poisson(λij), for i = 1, . . . , D; j = 1, . . . , D, (7.10)

where λij = λ+
i λ−j ∑k λT

k θ′ikθ′jk .
Here, λ+

i is the propensity of document i to cite and λ−j represents the popularity
of cited document j. The parameter λT

k scales the k-th topic, effectively penalising
common topics and strengthen rare topics. Hence, a citation from document i to
document j is more likely when these documents are having relevant topics. The
Poisson distribution is used instead of a Bernoulli distribution because it leads to
dramatically reduced complexity in analysis [Zhu et al., 2013]. We note that the
Poisson distribution is similar to the Bernoulli distribution when the mean parameter
is small. We present a list of variables associated with the CNTM in Table 7.1.

7.3.3 Incorporating Supervision into CNTM

Author modelling allows topic sharing of multiple documents written by the same
author. However, there are many authors who have authored only a few publica-
tions. Their treatment can be problematic to topic models that incorporate author-
ship information since these authors are not discriminative enough for prediction.
We propose an extension of the CNTM to address this issue. We name this extension
the supervised CNTM (SCNTM) as it allows supervision during model training.

We introduce author threshold η, a parameter that controls the level of super-
vision used by the SCNTM. In the SCNTM, for each document, if the author has
produced less than η publications, the authorship is replaced by a dummy author that
corresponds to the categorical label of the document. These authors are effectively
merged to form a collection of authors with similar research area. For example,
η = 2 means authors who have only a single publication are replaced, while η = 1
corresponds to no replacement. In addition to being able to cluster the documents
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Table 7.1: List of Variables for the Citation Network Topic Model (CNTM).

Variable Name Description

zdn Topic Category (topical) label for word wdn .

wdn Word
Observed word or phrase at position n
in document d.

xij Citations
Number of times document i cites doc-
ument j.

φ′dk Word distribution
Probability distribution in generating
words given document d and topic k.

φk Topic–word distribution Word prior for φ′dk .

θd Document–topic distribution
Probability distribution in generating
topics for document d.

θ′d Document–topic prior Topic prior for θd .

νa Author–topic distribution
Probability distribution in generating
topics for author a.

γ Global word distribution Word prior for φk .

µ Global topic distribution Topic prior for νa .

αN Discount Discount parameter for PYP N .

βN Concentration Concentration parameter for PYP N .

HN Base distribution Base distribution of the PYP N .

λij Rate Rate parameter or the mean for xij .

λ+
i Cite propensity Propensity to cite for document i.

λ−i Cited propensity Propensity to be cited for document j.

λT
k Scaling factor Citation scaling factor for topic k.

better, as shown in Section 7.7.4, the SCNTM achieves a reduction of memory usage
by greatly reducing the number of authors that need to be modelled.

7.4 Model Likelihood

In this section, we present the posterior likelihood of the CNTM. Note that we have
used the CRP representation as discussed in Section 5.3. As before, we will use c to
denote customer counts and t to denote table counts.
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7.4.1 Posterior Likelihood for the HPYP Topic Model

Deriving the posterior likelihood for the topic model part of the CNTM follows
the reasoning in Section 5.3, so we will keep it brief. As before, we use bold face
capital letters to denote the set of all relevant lower case variables. For example,
Z = {z11, · · · , zDND} denotes the set of all topic assignments. Additionally, we de-
note Ξ as the set of all hyperparameters, whether they are from the HPYP topic
model (α, β), or from the citation network Poisson model (λ). With the CRP rep-
resentation, we can write the posterior of the HPYP topic model in a modularised
form, as follows:

p(Z, T, C |W, Ξ) ∝ p(Z, W, T, C |Ξ)

∝ f (µ)

(
A

∏
a=1

f (νa)

)(
D

∏
d=1

f (θ′d) f (θd)
K

∏
k=1

f (φ′dk)

)(
K

∏
k=1

f (φk)

)

f (γ)

( |V|
∏
v=1

(
1
|V|

)tγ
v
)

, (7.11)

as before, the function f (N ) is the modularised likelihood for the variable N defined
in Equation (5.9).

7.4.2 Posterior Likelihood for the Citation Network Poisson Model

For the citation network, the Poisson likelihood for each xij is given as

p(xij | λ, θ′) =
λ

xij
ij

xij! eλij
=

(
λ+

i λ−j
K

∑
k=1

λT
k θ′ikθ′jk

)xij

exp

(
−λ+

i λ−j
K

∑
k=1

λT
k θ′ikθ′jk

)
. (7.12)

Note that the term xij! is dropped in Equation (7.12) since xij can only be 0 or 1 given
the format of the data thus xij! is evaluated to 1. With conditional independence of
the xij given θ′, the joint likelihood for the whole citation network X = {x11, · · · , xDD}
can be written as

p(X | λ, θ′) =

(
D

∏
i=1

(λ+
i )

g+i (λ−i )
g−i

)[
D

∏
i=1

D

∏
j=1

(
K

∑
k=1

λT
k θ′ikθ′jk

)xij
]

exp

(
−

D

∑
i=1

D

∑
j=1

K

∑
k=1

λ+
i λ−j λT

k θ′ikθ′jk

)
, (7.13)

where g+i is the number of citations in publication i, that is, g+i = ∑j xij , and g−i is
the number of times publication i being cited, that is, g−i = ∑j xji . We also make a
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simplifying assumption that xii = 1 for all documents, that is, all publications are
treated as self-cited. This assumption is important since defining xii allows us to
rewrite the joint likelihood into Equation (7.13), which is crucial for efficient caching
during inference. This reduces the polynomial time complexity into a linear one, see
Section 7.9.3 for details. The full posterior of the CNTM is simply the product of the
two posteriors from Equation (7.11) and Equation (7.13), namely,

p(X, Z, T, C |W, X) = p(Z, T, C |W, Ξ) p
(
X | λ, θ′

)
. (7.14)

In the next section, we demonstrate that our model representation gives rise to an
intuitive sampling algorithm for learning the model. We also show how the Poisson
model integrates into the topic modelling framework.

7.5 Inference Techniques

Here, we derive the MCMC algorithms for training the CNTM.29 We first discuss the
collapsed Gibbs sampler for the HPYP topic model and then describe the Metropolis-
Hastings (MH) algorithm for the citation network. The full inference procedure is
performed by alternating between the collapsed Gibbs sampler and the MH algo-
rithm. Finally, we outline the hyperparameters samplers.

7.5.1 Collapsed Gibbs Sampler for the HPYP Topic Model

We adopt the collapsed Gibbs sampler developed in Section 5.3 for the learning of
the HPYP topic model. The only difference for the HPYP topic model in this chapter
is the formulation of the joint conditional posterior distribution.

To illustrate, the joint conditional posterior distribution used in the blocked Gibbs
sampler is given as

p
(
zdn, T, C |Z−dn, W, T−dn, C−dn, Ξ

)
=

p(Z, T, C |W, Ξ)

p(Z−dn, T−dn, C−dn |W, Ξ)
. (7.15)

As before, the superscript 2−dn indicates that the word wdn and its associated vari-
ables are removed from the respective sets.

7.5.2 Metropolis-Hastings Algorithm for the Citation Network

A naïve MH algorithm can be proposed for learning the citation network. For ex-
ample, to sample the document topic distribution θ′d given X, we can propose a new

29Note that SCNTM follows the same inference algorithm as CNTM.
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θ′d with a Dirichlet distribution given the parent vector νad , and accept or reject the
proposal following an MH scheme. However, this algorithm requires the probabil-
ity vectors (θ′, ν, µ) to be stored explicitly (as probability vectors, rather than counts)
and subsequently the collapsed Gibbs sampler in Section 7.5.1 would be considerably
more complicated.

Instead, we propose a novel MH algorithm that allows the probability vectors to
remain integrated out, thus retaining the fast discrete sampling procedure for the
PYP hierarchy, rather than, for instance, resorting to an expectation-maximisation
(EM) algorithm or variational approach. We introduce an auxiliary variable yij ,
named citing topic, to denote the topic that prompts publication i to cite publica-
tion j. To illustrate, for a biology publication that cites a machine learning publication
for the learning technique, the citing topic would be ‘machine learning’ instead of
‘biology’. From Equation (7.10), we model the citing topic yij as jointly Poisson with
xij , as follows:

xij, yij = k | λ, θ′ ∼ Poisson
(
λ+

i λ−j λT
k θ′ikθ′jk

)
. (7.16)

Incorporating Y, the set of all yij , we rewrite the citation network likelihood as

p(X, Y | λ, θ′) ∝

(
D

∏
i=1

(
λ+

i

)g+i
(
λ−i
)g−i

)(
K

∏
k=1

(
λT

k
) 1

2 ∑i hik

)(
D
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i=1

K
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k=1

θ′ik
hik

)

exp

(
−

D

∑
i=1

D

∑
j=1

λ+
i λ−j λT

yij
θ′iyij

θ′jyij

)
, (7.17)

where hik = ∑j xij I(yij = k) + ∑j xji I(yji = k) is the number of connections publica-
tion i made due to topic k. Note that I(·) denotes the indicator function. We further
note that we can only rewrite the likelihood into this form after defining xii as in
Section 7.4.2.

To integrate out θ′, we note the term θ′ik
hik appears like a multinomial likelihood,

so we absorb them into the likelihood for p(Z, T, C |W, Ξ) where they correspond

to additional counts for cθ′i , with hik added to cθ′i
k . To disambiguate the source of the

counts, we will refer these customer counts contributed by xij as network counts, and
denote the augmented counts as C+ (C plus network counts). For the exponential
term, we use the delta method approximation [Oehlert, 1992],∫

f (θ) exp
(
− g(θ)

)
dθ ≈ exp

(
− g
(
θ̂
)) ∫

f (θ)dθ , (7.18)

where θ̂ is the expected value according to a distribution proportional to f (θ). This
approximation is reasonable as long as the terms in the exponential are small (see
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Appendix A.2). The approximate full posterior of the CNTM can then be written as

p(Z, W, T, C, X, Y|λ, Ξ) ≈ p(Z, W, T, C+|Ξ)

(
D

∏
i=1

(
λ+

i

)g+i
(
λ−i
)g−i

)(
K

∏
k=1

(
λT

k
) 1

2 ∑i hik

)

exp

(
−

D

∑
i=1

D

∑
j=1

λ+
i λ−j λT

yij
θ̂′iyij

θ̂′jyij

)
. (7.19)

The MH algorithm can be summarised in three steps: estimate the document topic
prior θ′, propose a new citing topic yij , and accept or reject the proposed yij follow-
ing an MH scheme. Note that the MH algorithm is similar to the collapsed Gibbs
sampler, where we decrement the counts, sample a new state and update the counts.
Since all probability vectors are represented as counts, we do not need to deal with
their vector form in the collapsed Gibbs sampler. Additionally, our MH algorithm is
intuitive and simple to implement. Like the words in a document, each citation is
assigned a topic, hence the words and citations can be thought as voting to determine
the topic of the documents.

The detail for the MH algorithm for the citation network is as follows. First, for
each document d, we estimate the expected document–topic prior θ̂′d

θ̂′d =

(
· · · ,

(αθ′d Tθ′d + βθ′d)ν̂adk + cθ′d
k − αθ′d Tθ′d

k

βθ′d + Cθ′d
, · · ·

)
, (7.20)

where ν̂ai in Equation (7.20) is recursively computed from µ̂ and its associated counts,
see Section 5.4.4 for details.

Then, for each document pair (i, j) that satisfies xij = 1, we decrement the net-
work counts associated with xij , and re-sample yij with the proposal distribution
derived from Equation (7.16):

p
(

ynew
ij = k

∣∣∣ θ̂′i , θ̂′j
)

∝ λT
k θ̂′ik θ̂′jk exp

(
− λ+

i λ−j λT
k θ̂′ik θ̂′jk

)
, (7.21)

which can be further simplified since the terms inside the exponential are very small,
hence the exponential term approximates to 1. We empirically inspected the expo-
nential term and we found that almost all of them are between 0.99 and 1. This
means the ratio of the exponentials is not significant for sampling a new citing topic
ynew

ij . So we ignore the exponential term and let

p
(

ynew
ij = k

∣∣∣ θ̂′i , θ̂′j
)

∝ λT
k θ̂′ik θ̂′jk . (7.22)

We use the superscripts 2new and 2old to denote the proposed sample and the old
value respectively. We compute the acceptance probability A′ = min(A, 1) for the
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newly sampled ynew
ij = y′, changed from yold

ij = y∗, and the successive change to the

document–topic priors from θ̂′
old

to θ̂′
new

. In the following, we abuse the notations i
and j, where the i and j in the summation indexes all documents instead of pointing
to particular document i and document j. We decided against introducing additional
variables to avoid making the equation more confusing. The acceptance ratio A is
given as follows:
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Finally, if the sample is accepted, we update yij and the associated customer
counts. Otherwise, we discard the sample and revert the changes.

7.5.3 Hyperparameter Sampling

As mentioned in Section 5.4.3, hyperparameter sampling for the priors are important.
In our inference algorithm, we sample the concentration parameters β of all PYPs
with an auxiliary variable sampler [Teh, 2006a], but leave the discount parameters
α fixed. We do not sample the α due to the coupling of the parameter with the
Stirling numbers cache. The detail in sampling the hyperparameter β is discussed in
Section 5.4.3 and thus not covered here.

In addition to the PYP hyperparameters, we also sample λ+, λ− and λT with a
Gibbs sampler. We let the hyperpriors for λ+, λ− and λT to be gamma distributed
with shape ε0 and rate ε1, that is,

λ+
i ∼ Gamma(ε0, ε1), (7.24)

λ−i ∼ Gamma(ε0, ε1), (7.25)

λT
k ∼ Gamma(ε0, ε1). (7.26)

With the conjugate gamma prior, the posteriors for λ+
i , λ−i and λT

k are also gamma
distributed, so they can be sampled directly.

λ+
i |X, λ−, λTθ′ ∼ Gamma

(
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, (7.27)

λ−i |X, λ+, λTθ′ ∼ Gamma
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, (7.28)
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)(
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. (7.29)

We apply vague priors to the hyperpriors by setting ε0 = ε1 = 1.
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Algorithm 7.1 Inference Algorithm for the CNTM

1. Initialise the model by assigning a random topic assignment zdn to each word
wdn and constructing the relevant customer counts cNk and table counts tNk for
all variables N .

2. For each word wdn in each document d, perform the following:

(a) Decrement the counts associated with zdn and wdn .

(b) Blocked sample a new topic zdn and the associated counts T and C with
Equation (7.15).

3. For each citation xij , perform the following:

(a) Decrement the network counts associated with xij and yij .

(b) Sample a new citing topic yij from the joint posterior given by Equa-
tion (7.22).

(c) Accept or reject the sampled yij with an MH scheme with acceptance prob-
ability given by Equation (7.23).

4. Update the hyperparameters β, λ+, λ− and λT.

5. Repeat Steps 2 – 4 until the model converges or when a fix number of iterations
is reached.

The full inference algorithm of the CNTM is the combination of the collapsed
Gibbs sampler, the MH algorithm and the hyperparameters sampler. The full infer-
ence algorithm is summarised in Algorithm 7.1.

7.6 Data

We perform our experiments on subsets of CiteSeerX data30 which consists of scien-
tific publications. Each publication from CiteSeerX is accompanied by title, abstract,
keywords, authors, citations and other metadata. We prepare three publication datasets
from CiteSeerX for evaluations. The first dataset corresponds to Machine Learning
(ML) publications, which are queried from CiteSeerX using the keywords from Mi-
crosoft Academic Search.31 The ML dataset contains 139,227 publications. Our sec-
ond dataset corresponds to publications from ten distinct research areas. The query
words for these ten disciplines are chosen such that the publications form distinct
clusters. We name this dataset M10 (Multidisciplinary 10 classes), which is made of
10,310 publications. For the third dataset, we query publications from both arts and

30http://citeseerx.ist.psu.edu/ (last accessed 18 August 2014)
31http://academic.research.microsoft.com/ (last accessed 18 August 2014)

http://citeseerx.ist.psu.edu/
http://academic.research.microsoft.com/
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science disciplines. Arts publications are made of history and religion publications,
while the science publications contain physics, chemistry and biology researches. This
dataset consists of 18,720 publications and is named AvS (Arts versus Science) in this
chapter. These queried datasets are made available online.32

The keywords used to create the datasets are obtained from Microsoft Academic
Search, and are listed in Appendix A.3. For the clustering evaluation in Section 7.7.4,
we treat the query categories as the ground truth. However, publications that span
multiple disciplines can be problematic for clustering evaluation, hence we sim-
ply remove the publications that satisfy the queries from more than one discipline.
Nonetheless, the labels are inherently noisy. The metadata for the publications can
also be noisy, for instance, the authors field may sometimes display the publication
keywords instead of the authors, publication title is sometimes an URL, and table
of contents can be mistakenly parsed as the abstract. We discuss our treatments to
these issues in Section 7.6.1. We also note that non-English publications are discarded
using langid.py [Lui and Baldwin, 2012].

In addition to the manually queried datasets, we also use the existing datasets
from LINQS [Sen et al., 2008]33 to facilitate comparison with existing work. In partic-
ular, we use their CiteSeer, Cora and PubMed datasets. Their CiteSeer data consists
of Computer Science publications and hence we name the dataset CS to remove am-
biguity. Although these datasets are small, they are fully labelled and thus useful
for clustering evaluation. However, these three datasets do not come with additional
metadata such as the authorship information. Note that the CS and Cora datasets
are presented as Boolean matrices, that is, the word counts information is lost and
we assume that all words in a document occur only once. Additionally, the words
have been converted to integer so they do not convey any semantic. Although this
representation is less useful for topic modelling, we still use them for the sake of
comparison. For the PubMed dataset, we recover the word counts from TF-IDF us-
ing a simple assumption (see Appendix A.4). We present a summary of the datasets
in Table 7.2 and their respective categorical labels in Table 7.3.

7.6.1 Removing Noise

Here, we briefly discuss the steps taken in cleansing the noise from the CiteSeerX

datasets (ML, M10 and AvS). Note that the keywords field in the publications are of-
ten empty and are sometimes noisy, that is, they contain irrelevant information such
as section heading and title, which makes the keywords unreliable source of infor-
mation as categories. Instead, we simply treat the keywords as part of the abstracts.
We also remove the URLs from the data since they do not provide any additional
useful information.

32http://karwai.weebly.com/publications.html (last accessed 18 August 2014)
33http://linqs.cs.umd.edu/projects/projects/lbc/ (last accessed 18 August 2014)

http://karwai.weebly.com/publications.html
http://linqs.cs.umd.edu/projects/projects/lbc/
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Table 7.2: Summary of the datasets used in this chapter, showing the number of
publications, citations, authors, unique word tokens, the average number of words in
each document, and the average percentage of unique words repeated in a document.
Note: author information is not available in the last three datasets.

Dataset Publications Citations Authors Vocab Words/Doc Repeat [%]

ML 139 227 1 105 462 43 643 8 322 59.4 23.3
M10 10 310 77 222 6 423 2 956 57.8 24.3
AvS 18 720 54 601 11 898 4 770 58.9 17.0
CS 3 312 4 608 − 3 703 31.8 −
Cora 2 708 5 429 − 1 433 18.2 −
PubMed 19 717 44 335 − 4 209 67.6 40.1

Table 7.3: Categorical labels of the datasets.

Dataset Classes Categorical Labels

ML 1 Machine Learning

M10 10
Agriculture, Archaeology, Biology, Computer Science,
Physics, Financial Economics, Industrial Engineering,
Material Science, Petroleum Chemistry, Social Science

AvS 5 History, Religion, Physics, Chemistry, Biology

CS 6 Agents, AI, DB, IR, ML, HCI

Cora 7
Case Based, Genetic Algorithms, Neural Networks,

Theory, Probabilistic Methods, Reinforcement Learning,
Rule Learning

PubMed 3
“Diabetes Mellitus, Experimental”,

Diabetes Mellitus Type 1, Diabetes Mellitus Type 2

Moreover, the author information is not consistently presented in the CiteSeerX

data. Some of the authors are shown with full name, some with first name initialised,
while some others are prefixed with title (Prof, Dr., etc.). We thus standardise the au-
thor information by removing all title from the authors, initialising all first names
and discarding the middle names. Although standardisation allows us to match up
the authors, it does not solve the problem that different authors who have the same
initial and last name are treated as a single author. For example, both Bruce Lee and
Brett Lee are standardised to B Lee. Note this corresponds to a whole research prob-
lem [Han et al., 2004, 2005] and hence not addressed in this dissertation. Occasionally,
institutions are mistakenly treated as authors in CiteSeerX data. Example includes
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American Mathematical Society and Technische Universität München. In this case, we re-
move the invalid authors using a list of exclusion words. The list of exclusion words
is presented in Appendix A.5.

7.6.2 Text Preprocessing

Here, we discuss the preprocessing pipeline adopted for the queried datasets (note
LINQS data were already processed). First, since publication text contains many
technical terms that are made of multiple words, we tokenise the text using phrases
(or collocations) instead of unigram words. Thus, phrases like decision tree are treated
as single token rather than two distinct words. The phrases are extracted from the
respective datasets using LingPipe [Carpenter, 2004].34 As in Chapter 6, we use the
word words to mean both unigram words and phrases.

We then change all the words to lower case and filter out certain words. Words
that are removed are stop words, common words and rare words. Note that we use
the stop words list from MALLET [McCallum, 2002], we define common words as
words that appear in more than 18 % of the publications, and rare words are words
that occur less than 50 times in each dataset. Note that the thresholds are determined
by inspecting the words removed. Finally, the tokenised words are stored as arrays of
integers. We also split the datasets to 90 % training set for training the topic models,
and 10 % test set for evaluations detailed in Section 7.7.

7.7 Experiments and Results

In this section, we describe experiments that compare the CNTM and SCNTM against
several baseline topic models. The baselines are HDP-LDA with burstiness [Buntine
and Mishra, 2014], a nonparametric extension of the ATM, and the PMTLM [Zhu
et al., 2013]. We also display the results for the CNTM without the citation network
for comparison purpose. We evaluate these models quantitatively with goodness-of-
fit and clustering measures.

7.7.1 Experiment Settings

In the following experiments, we initialise the concentration parameters β of all PYPs
to 0.1, noting that the hyperparameters are updated automatically. We set the dis-
count parameters α to 0.7 for all PYPs corresponding to the “word” side of the CNTM
(i.e., γ, φ, φ′). This is to induce power-law behaviour on the word distributions. We
simply set the α to 0.01 for all other PYPs. Note that the number of topics grow
with data in nonparametric topic modelling. To prevent the learned topics to be too
fine-grained, we set a limit to the maximum number of topics that can be learned. In

34http://alias-i.com/lingpipe/ (last accessed 18 August 2014)

http://alias-i.com/lingpipe/
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particular, we set the number of topics cap to 20 for the ML dataset, 50 for the M10
dataset and 30 for the AvS dataset. For all the topic models, our experiments find
that the number of topics always converges to the cap. For CS, Cora and PubMed
datasets, we fix the number of topics to 6, 7 and 3 respectively for comparison against
the PMTLM.

When training the topic models, we run the inference algorithm for 2,000 itera-
tions. For the CNTM, the MH algorithm for the citation network is performed after
the 1,000th iteration, this is so the topics can be learned from the collapsed Gibbs
sampler first. This gives a faster learning algorithm and also allows us to assess the
“value-added” by the citation network to topic modelling (see Section 7.9.1). We repeat
each experiment five times to reduce the estimation error of the evaluation measures.

7.7.2 Estimating the Test Documents’ Topic Distributions

The topic distribution θ′ on the test documents are required in performing various
evaluations on topic models. These topic distributions are unknown and hence need
to be estimated. Standard practice uses the first half of the text in each test document
to estimate θ′, and uses the other half for evaluations. However, since abstracts are
relatively shorter compared to articles, adopting such practice would mean there are
too little text to be used for evaluations. Instead, we used only the words from the
publication title to estimate θ′, allowing more words for evaluation. Moreover, title
is also a good indicator of topic so it is well suited to be used in estimating θ′. The
estimated θ′ will be used in perplexity and clustering evaluations below. We note
that for the clustering task, both title and abstract text are used in estimating θ′ as
there is no need to use the text for clustering evaluation.

We briefly describe how we estimate the topic distributions θ′ of the test docu-
ments. Denoting wdn to represent the word at position n in a test document d, we
estimate the topic assignment zdn of word wdn independently by sampling from their
predictive posterior distribution given the learned author–topic distributions ν and
topic–word distributions φ:

p(zdn |wdn, ν, φ) ∝ νadk φkwdn , (7.30)

noting that the intermediate distributions φ′ are integrated out (see Appendix A.6).
We then build the customer counts cθd for these test documents from the sampled

z (for simplicity, we set the corresponding table counts as half the customer counts).
With these, we then estimate the document–topic distribution θ′ from Equation (7.20).
If citation network information is present, we refine the document–topic distribution
θ′d using the linking topic ydj for train document j where xdj = 1. The linking topic
ydj is sampled from the estimated θ′d and is added to the customer counts cθ′d , which
further updates the document–topic distribution θ′d .



§7.7 Experiments and Results 97

Doing the above gives a sample of the document–topic distribution θ
′(r)
d . We

adopt a Monte Carlo approach by generating R = 500 samples of θ
′(r)
d , and calculate

the Monte Carlo estimate of θ′d , as described in Section 5.5.1.

7.7.3 Goodness-of-fit Test

Perplexity, as detailed in Section 5.5.2, is a popular metric used to evaluate the
goodness-of-fit of a topic model. Since perplexity is negatively related to the like-
lihood of the observed words W given the model, the lower the better. Here, the
perplexity can be computed as:

perplexity(W) = exp

(
− ∑D

d=1 ∑Nd
n=1 log p

(
wdn | θ′d, φ

)
∑D

d=1 Nd

)
, (7.31)

where p
(
wdn | θ′d, φ

)
is obtained by summing over all possible topics:

p
(
wdn | θ′d, φ

)
=

K

∑
k=1

p
(
wdn | zdn = k, φk

)
p
(
zdn = k | θ′d

)
=

K

∑
k=1

φkwdn θ′dk . (7.32)

Here we note that the distributions φ′ and θ are integrated out (following the method
shown in Appendix A.6).

We calculate the perplexity corresponds to both the training data and test data.
Note that the perplexity estimate is unbiased since the words used in estimating θ′

are not used for evaluation. We present the perplexity result in Table 7.4, showing
the significantly (at 5 % significance level) better performance of CNTM against the
baselines on the ML, M10 and AvS datasets. For these datasets, inclusion of citation
information also provides additional improvement for model fitting, as shown in the
comparison of the CNTM with and without network component. Note that for the
CS, Cora and PubMed datasets, the nonparametric ATM was not performed due to
the lack of authorship information.

7.7.4 Document Clustering

Next, we evaluate the clustering ability of the topic models. As mentioned in Sec-
tion 7.6, for M10 and AvS datasets, we assume their ground truth classes correspond
to the query categories used in creating the datasets. The ground truth classes for
CS, Cora and PubMed datasets were provided. Note we do not use the ML dataset
since it has only one category.

We evaluate the clustering performance with purity and normalised mutual infor-
mation (NMI), as discussed in Section 5.5.4. Purity is a simple clustering measure
which can be interpreted as the proportion of documents correctly clustered, while
NMI is an information theoretic measures used for clustering comparison.
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Table 7.4: Perplexity for the training and test documents for all datasets, a lower
perplexity means better model fitting. We can see that the CNTM with the citation
network generally outperforms the other topic models in model fitting. Note that
the nonparametric ATM is not performed for the last three datasets due to the lack
of authorship information in these datasets.

Model
Perplexity

Training Test Training Test

ML M10
Bursty HDP-LDA 4904.2± 71.3 4992.9± 65.6 2467.9± 34.8 2825.6± 61.4

Nonparametric ATM 2238.2± 12.2 2460.3± 11.3 1822.4± 15.0 2056.4± 18.3

CNTM w/o network 2036.3± 4.6 2118.1± 3.7 922.6± 11.0 1263.9± 8.8

CNTM w network 1919.5± 8.8 2039.5± 11.7 910.2± 13.3 1261.0± 25.7

AvS CS
Bursty HDP-LDA 2460.4± 66.4 2612.8± 91.7 1498.4± 4.1 1616.8± 38.8

Nonparametric ATM 2225.9± 45.5 2511.9± 52.4 N/A N/A

CNTM w/o network 1540.2± 18.5 1959.2± 2.4 1506.8± 4.4 1609.5± 39.2

CNTM w network 1515.9± 2.1 1938.9± 10.4 1168.6± 27.3 1588.2± 93.9

Cora PubMed
Bursty HDP-LDA 678.3± 1.7 706.3± 16.8 300.0± 0.3 300.2± 1.2

CNTM w/o network 554.8± 14.1 881.1± 110.9 299.9± 0.2 300.1± 1.3

CNTM w network 527.0± 8.7 719.0± 111.4 350.5± 20.1 297.3± 3.2

The clustering results are presented in Table 7.5. We can see that the CNTM
greatly outperforms the PMTLM in NMI evaluation. Note that for a fair comparison
against PMTLM, the experiments on the CS, Cora and PubMed datasets are evaluated
with a 10-fold cross validation. Additionally, we would like to point out that since no
author information is provided on these 3 datasets, the CNTM becomes a variant of
HDP-LDA, but with PYP instead of DP. We find that incorporating supervision into
the topic model leads to improvement on clustering task, as predicted. However, this
is not the case for the PubMed dataset, we suspect this is because the publications in
the PubMed dataset are highly related to one another so the category labels are less
useful (see Table 7.3).

7.8 Qualitative Analysis of Learned Topic Models

We move on to perform qualitative analysis on the learned topic models in this sec-
tion. More specifically, we inspect the learned topic–word distributions, as well as
the topics associated with the authors. Additionally, we present a visualisation of the
author–topics network learned by the CNTM.
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Table 7.5: Comparison of clustering performance on all datasets except the ML
dataset, showing the purity and the NMI from the training set, the test set and the
overall corpus. Higher purity and NMI indicate better performance. The results pre-
sented, in units of 0.01, show that the CNTM and the SCNTM generally outperform
the baselines. Note that the best PMTML results are chosen for comparison, which
is obtained from Table 2 in Zhu et al. [2013]

Dataset Model
Purity NMI

Train Test Overall Train Test Overall

M10

Bursty HDP-LDA 61.7 65.6 62.1 34.8 67.0 38.0
Nonparametric ATM 55.4 57.8 55.7 29.1 63.0 32.4
CNTM w/o network 67.3 64.9 67.0 42.5 66.5 44.9
CNTM w network 66.4 69.9 66.8 41.1 68.6 43.8
SCNTM (η = 10) 85.3 53.1 82.1 60.4 62.7 60.6
SCNTM (η = ∞) 88.1 47.8 84.0 62.3 62.3 62.3

AvS

Bursty HDP-LDA 72.8 75.0 73.0 32.1 66.3 35.5
Nonparametric ATM 64.1 65.2 64.2 24.7 61.9 28.4
CNTM w/o network 77.0 76.3 76.9 37.4 66.6 40.3
CNTM w network 76.0 74.0 75.8 35.4 65.5 38.4
SCNTM (η = 10) 87.9 67.3 85.8 47.5 66.7 49.4
SCNTM (η = ∞) 87.1 50.5 83.4 47.8 64.5 49.4

CS

PMTLM N/A N/A N/A N/A 41.4 N/A

Bursty HDP-LDA 30.5 41.4 31.6 4.9 60.5 10.5
CNTM w/o network 27.6 41.6 29.0 9.0 61.1 14.2
CNTM w network 32.6 44.6 33.8 13.0 63.4 18.0
SCNTM (η = ∞) 71.2 33.6 67.5 56.6 69.1 57.9

Cora

PMTLM N/A N/A N/A N/A 51.4 N/A

Bursty HDP-LDA 31.0 34.4 31.4 3.6 58.5 9.1
CNTM w/o network 34.0 35.4 34.1 7.7 58.6 12.8
CNTM w network 37.9 40.5 38.2 13.7 61.2 18.5
SCNTM (η = ∞) 86.3 39.2 81.6 83.5 69.8 82.2

PubMed

PMTLM N/A N/A N/A N/A 27.0 N/A

Bursty HDP-LDA 49.3 54.3 49.8 9.7 72.9 16.0
CNTM w/o network 53.1 53.7 53.2 15.7 72.5 21.4
CNTM w network 54.5 54.8 54.5 16.3 72.7 22.0
SCNTM (η = ∞) 53.2 53.5 53.2 16.5 72.6 22.2

7.8.1 Topical Summary of the Datasets

By analysing the topic–word distribution φk for each topic k, we obtain the topical
summary of the datasets. This is achieved by querying the top words associated
with each topic k from φk , which are learned by the CNTM. The top words give us
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Table 7.6: Topical summary for the ML, M10 and AvS datasets. The top words are
extracted from the topic–word distributions φ learned by the CNTM.

Topic Top Words

ML
Reinforcement Learning reinforcement, agents, control, state, task

Object Recognition face, video, object, motion, tracking
Data Mining mining, data mining, research, patterns, knowledge

SVM kernel, support vector, training, clustering, space
Speech Recognition recognition, speech, speech recognition, audio, hidden markov

M10
DNA Sequencing genes, gene, sequence, binding sites, dna

Agriculture soil, water, content, soils, ground
Financial Market volatility, market, models, risk, price

Bayesian Modelling bayesian, methods, models, probabilistic, estimation
Quantum Theory quantum, theory, quantum mechanics, classical, quantum field

AvS
Language Modelling type, polymorphism, types, language, systems
Molecular Structure copper, protein, model, water, structure

Quantum Theory theory, quantum, model, quantum mechanics, systems
Social Science research, development, countries, information, south africa

Family Well-being children, health, research, social, women

an idea of what the topics are about. In Table 7.6, we display some major topics and
the corresponding top words. We note that the topic labels are manually assigned
based on the top words. For example, we find that the major topics associated with
the ML dataset are various disciplines on machine learning such as reinforcement
learning and data mining.

We did not display the topical summary for the CS, Cora and PubMed datasets.
The reason being that the original word information is lost in the CS and Cora
datasets since the words were converted into integers, which are not meaningful.
While for the PubMed dataset, we find that the topics are too similar to each other
and thus not interesting. This is mainly because the PubMed dataset is focus on one
particular topic, which is on Diabetes Mellitus.

7.8.2 Analysing Authors’ Research Area

In CNTM, we model the author–topic distribution νi for each author i. This allows us
to analyse the topical interest of each author in a collection of publications. Here, we
focus on the M10 dataset since it covers a more diverse research areas. For each au-
thor i, we can determine their dominant topic k by looking for the largest topic in νi .
Knowing the dominant topic k of the authors, we can then extract the corresponding
top words from the topic–word distribution φk .
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Table 7.7: Major authors and their main research area. Top words are extracted from
the topic–word distribution φk corresponding to the dominant topic k of the author.

Author Topic Top Words

D. Aerts Quantum Theory quantum, theory, quantum mechanics, classical
Y. Bengio Neural Network networks, learning, recurrent, neural
C. Boutilier Decision Making decision making, agents, decision, theory, agent
S. Thrun Robot Learning robot, robots, control, autonomous, learning
M. Baker Financial Market market, risk, firms, returns, financial
E. Segal Gene Clustering clustering, processes, gene expression, genes
P. Tabuada Control System systems, hybrid, control systems, system, control
L. Ingber Statistical Mechanic statistical, mechanics, systems, users, interactions

In Table 7.7, we display the dominant topic associated with several major authors
and the corresponding top words. For instance, we can see that the author D. Aerts’s
main research area is in Quantum theory, while M. Baker focuses on financial market.
Again, we note that the topic labels are manually assigned to the authors based on
the top words associated with their dominant topics.

7.8.3 Author–topics Network Visualisation

In addition to inspecting the topic and word distributions, we present a way to graph-
ically visualise the author–topics network learned by the CNTM, using Graphviz.35

On the ML, M10 and AvS datasets, we analyse the influential authors and their con-
nections with the various topics learned by the CNTM. The influential authors are
determined based on a measure we call author influence, which is the sum of the λ−

of all their publications, that is, the influence of an author i is

Influence(i) =
D

∑
d=1

λ−d I(ad = i) , (7.33)

Note that ad denotes the author of document d, and I(·) is the indicator function, as
previously defined.

Figure 7.2 shows a snapshot of the author–topics network of the ML dataset. The
pink rectangles in the snapshot represent the topics learned by the CNTM, show-
ing the top words of the associated topics. The colour intensity (pinkness) of the
rectangle shows the relative weight of the topics in the corpus. Connected to the
rectangles are ellipses representing the authors, their size is determined by their cor-
responding author influence in the corpus. For each author, the thickness of the line
connecting to a topic shows the relative weight of the topic. Note that not all con-
nections are shown, some of the weak connections are dropped to create a neater

35http://www.graphviz.org/ (last accessed 18 August 2014)

http://www.graphviz.org/
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Figure 7.2: Snapshot of the author–topics network from the ML dataset. The pink
rectangles represent the learned topics, their intensity (pinkness) corresponds to the
topic proportion. The ellipses represent the authors, their size corresponds to the
author’s influence in the corpus. The strength of the connections are given by the
lines’ thickness.

diagram. In Figure 7.2, we can see that Z. Ghahramani works mainly in the area
of Bayesian inference, as illustrated by the strong connection to the topic with top
words “bayesian, networks, inference, estimation, probabilistic”. While N. Friedman
works in both Bayesian inference and machine learning classification, though with
a greater proportion in Bayesian inference. Due to the large size of the plots, we
present online36 the full visualisation of the author–topics network learned from the
CiteSeerX datasets.

7.9 Diagnostics

In this section, we perform some diagnostic tests for the CNTM. We assess the con-
vergence of the MCMC algorithm associated with CNTM and inspect the counts as-
sociated with the PYP for the document–topic distributions. Finally, we also present
a discussion on the running time of the CNTM.

36https://drive.google.com/folderview?id=0B74l2KFRFZJmVXdmbkc3UlpUbzA
(please download and view with a web browser for best quality, last accessed 24 July 2016)

https://drive.google.com/folderview?id=0B74l2KFRFZJmVXdmbkc3UlpUbzA
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Figure 7.3: Training word log likelihood vs iterations during training of the CNTM
with and without the network component. The red lines show the log likelihoods
of the CNTM with the citation network while the blue lines represent the CNTM
without the citation network. The five runs are obtained from five different folds of
the Cora dataset.

7.9.1 Convergence Analysis

It is important to assess the convergence of an MCMC algorithm to make sure that
the algorithm is not prematurely terminated. In Figure 7.3, we show the time series
plot of the training word log likelihood ∑dn log p(wdn | zdn, φ′) corresponds to the
CNTM trained with and without the network information. Recall that for the CNTM,
the Gibbs sampler is first performed for 1,000 iterations before performing the full
inference algorithm.

From Figure 7.3, we can clearly see that the Gibbs sampler converges quickly. For
the CNTM, it is interesting to see that the log likelihood improves significantly once
the network information is used for training (red lines), suggesting that the citation
information is useful. Additionally, we like to note that the acceptance rate of the
MH algorithm for the citation network averages to about 95 %, which is very high,
suggesting that the proposed MH algorithm is effective.

7.9.2 Inspecting Document–topic Hierarchy

As previously mentioned, modelling document–topic hierarchy allows us to balance
the contribution of text information and citation information toward topic mod-
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elling. In this section, we inspect the customer and table counts associated with
the document–topic distributions θ′ and θ to give an insight on how the above mod-
elling works. We first note that the number of words in a document tend to be higher
than the number of citations.

We illustrate with an example from the ML dataset, we look at the 600th docu-
ment, which contains 84 words but only 4 citations. The words are assigned to two
topics and we have cθ

1 = 53 and cθ
2 = 31. These customer counts are contributed

to θ′ by way of the corresponding table counts tθ
1 = 37 and tθ

2 = 20. The citations
contribute counts directly to θ′, in this case, three of the citations are assigned the
first topic while another one is assigned to the second topic. The customer count
for θ′ is the sum of the table counts from θ and the counts from citations. Thus,
cθ′

1 = 37 + 3 = 40 and cθ′
2 = 20 + 1 = 21. Note that the counts from θ′ are used

to determine the topic composition of the document. By modelling the document–
topic hierarchy, we have effectively diluted the influence of text information, this is
essential to counter the higher number of words compared to citations.

7.9.3 Computation Complexity

Finally, we briefly discuss the computational complexity of the proposed MCMC al-
gorithm for the CNTM. Although we did not particularly optimise our implementa-
tion for speed, the algorithm is of linear time with the number of words, the number
of citations and the number of topics. Recall that all implementations are written in
the Java programming language.

For the Gibbs sampling algorithm of the hierarchical PYP topic model, as dis-
cussed in Chapter 5, we implemented a general Gibbs sampling framework that
works with arbitrary PYP network, this allows us to test various PYP topic models
with ease and reduce the development time. However, having a general framework
for PYP topic models means it is harder to optimise the implementation, thus it per-
forms slower than existing implementations (such as the hca37). Nevertheless, the
running time is linear with the number of words in the corpus and the number of
topics, and constant time with the number of citations.

A naïve implementation of the MH algorithm for the citation network would be
of polynomial time, due to the calculation of the double summation in the posterior.
However, with caching and reformulation of the double summation, we can evaluate
the posterior in linear time. Our implementation of the MH algorithm is linear (in
time) with the number of citations and the number of topics, and it is constant time
with respect to the number of words.

Table 7.8 shows the average time taken to perform the learning algorithm for
2,000 iterations. All the experiments were performed with a machine having Intel(R)
Core(TM) i7 CPU @ 3.20GHz (though only 1 processor was used) and 24 Gb RAM.

37http://mloss.org/software/view/527/ (last accessed 18 August 2014)

http://mloss.org/software/view/527/
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Table 7.8: Time taken to perform 2,000 iterations of the training algorithm given the
statistics of the datasets. The reported SCNTM run time corresponds to η = ∞. The
run time of the SCNTM is of similar magnitude to that of the CNTM.

Datasets Total Words Citations Number of Topics
Time (mins)

CNTM SCNTM

ML 8 270 084 1 105 462 20 16 194 -
M10 595 918 77 222 50 1 772 1 845
AvS 1 102 608 54 601 30 2 131 2 092
CS 105 322 4 608 6 45 43

Cora 49 286 5 429 7 24 26
PubMed 1 332 869 44 335 3 532 397

7.10 Summary

In this chapter, we propose the Citation Network Topic Model (CNTM) to jointly
model research publications and their citation network. The CNTM makes use of the
author information as well as the categorical labels associated with each document
for supervised learning. CNTM performs text modelling with a hierarchical PYP
topic model and models the citations with the Poisson distribution given the learned
topic distributions. We also propose a novel learning algorithm for the CNTM, which
exploits the conjugacy of the Dirichlet distribution and the multinomial distribution,
allowing the sampling of the citation networks to be of similar form to the collapsed
Gibbs sampler of a topic model. As discussed, our learning algorithm is intuitive
and easy to implement.

The CNTM offers substantial performance improvement over previous work [Zhu
et al., 2013]. On three CiteSeerX datasets and three existing and publicly available
datasets, we demonstrate the improvement of joint topic and network modelling
in terms of model fitting and clustering evaluation. Additionally, incorporating
supervision into the CNTM provides further improvement on the clustering task.
Analysing the learned topic models let us extract useful information on the corpora,
for instance, we can inspect the learned topics associated with the documents and
examine the research interest of the authors. We also visualise the author–topic net-
work learned by the CNTM, which allows us to have a quick look at the connection
between the authors by way of their research areas.

Future work on this area includes learning the influences of the co-authors and
utilising them for author merging. In the next chapter, we will go back to modelling
tweets, we present a fully Bayesian topic model that jointly models the text content
and the underlying social media network between the authors.
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Chapter 8

Modelling Text and Author
Network on Tweets

This chapter discusses how we make use of auxiliary information that is available
on Twitter for a fully Bayesian modelling of tweets. In particular, we incorporate
the authors, hashtags, the “follower” network, and the text content. we propose the
Twitter Network Topic model (TNTM) to jointly model the text and the social network in
a fully Bayesian nonparametric way. The TNTM employs a HPYP for text modelling
and a GP random function model for social network modelling. We show that the
TNTM significantly outperforms several existing nonparametric models due to its
flexibility. Moreover, the TNTM enables additional informative inference such as
authors’ interests, hashtag analysis, as well as leading to further applications such as
author recommendation, automatic topic labelling, and hashtag suggestion.

This work differs from Chapter 7 in that we model the network between the
authors rather than between the documents. We also emphasise that the treatment
on the hashtags is different to that of Chapter 6, here, we model the hashtags directly
(treating them as words). This chapter is adapted and extended from Lim et al. [2013].

8.1 Introduction

Emergence of web services such as blogs, microblogs and social networking websites
allows people to contribute information freely and publicly. This user-generated
information is generally more personal, informal, and often contains personal opin-
ions. In aggregate, it can be useful for reputation analysis of entities and products
[Aula, 2010], natural disasters detection [Karimi et al., 2013], obtaining first-hand
news [Broersma and Graham, 2012], or even demographic analysis [Correa et al.,
2010]. In this chapter, we focus on Twitter, an accessible source of information that
allows users to freely voice their opinions and thoughts in short text known as tweets.

Although the Latent Dirichlet allocation (LDA) introduced in Section 4.1 is a
popular model for text modelling, a direct application on tweets yields poor result as
tweets are short and often noisy [Zhao et al., 2011; Baldwin et al., 2013], that is, tweets
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are unstructured and often contain grammatical and spelling errors, as well as infor-
mal words such as user-defined abbreviations due to the 140 characters limit. LDA
fails on short tweets since it is heavily dependent on word co-occurrence. Also no-
table is that the text in tweets may contain special tokens known as hashtags; they are
used as keywords and allow users to link their tweets with other tweets tagged with
the same hashtag. Nevertheless, hashtags are informal since they have no standards.
Hashtags can be used as both inline words or categorical labels. When used as labels,
hashtags are often noisy, since users can create new hashtags easily and use any ex-
isting hashtags in any way they like.38 Hence instead of being hard labels, hashtags
are best treated as special words which can be the themes of the tweets. These prop-
erties of tweets make them challenging for topic models, and ad hoc alternatives are
used instead. For instance, Maynard et al. [2012] advocate the use of shallow method
for tweets, and Mehrotra et al. [2013] utilise a tweet-pooling approach to group short
tweets into a larger document. In other text analysis applications, tweets are often
‘cleansed’ by NLP methods such as lexical normalisation [Baldwin et al., 2013]. How-
ever, the use of normalisation is also criticised [Eisenstein, 2013], as normalisation
can change the meaning of text.

In this chapter, we propose a novel method in modelling microblogs by leveraging
the auxiliary information that accompanies tweets. This information, complement-
ing word co-occurrence, allows us to model the tweets better, as well as opening the
door to more applications, such as user recommendation and hashtag suggestion.
Our major contributions include (1) a fully Bayesian nonparametric model named
the Twitter Network Topic model (TNTM) that models tweets well, and (2) a combi-
nation of both the HPYP and the GP to jointly model text, hashtags, authors and the
followers network. Despite the complexity of the TNTM, its implementation is made
relatively straightforward using the flexible framework developed in Chapter 5.

The rest of this chapter is organised as follows. We present some related work in
Section 8.2. We then describe the TNTM and its posterior likelihood in Section 8.3
and 8.4. The inference procedures for the TNTM are discussed in Section 8.5. Sec-
tion 8.6 and 8.7 describe the datasets and the preprocessing procedure. In Section 8.8,
we evaluate the TNTM based on several evaluation measures and ablation studies,
which show that each part of the TNTM is important. Qualitative results suggest
that the learned topics are informative. Finally, we conclude this chapter and outline.

8.2 Related Work

The simplest of Bayesian topic model, LDA, is often extended for different types of
data. As discussed, some notable examples are the author-topic model (ATM) [Rosen-

38For example, hashtag hijacking, where a well defined hashtag is used in an “inappropriate” way. The
most notable example would be on the hashtag #McDStories, though it was initially created to promote
happy stories on McDonald’s, the hashtag was hijacked with negative stories on McDonald’s.
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Zvi et al., 2004], the tag-topic model [Tsai, 2011], the supervised LDA [Mcauliffe and
Blei, 2008], and the Topic-Link LDA [Liu et al., 2009]. These models only deal with one
kind of additional information and thus do not work well with tweets. Note that the
tag-topic model treats hashtags as hard labels and uses them to group tweets, which
is not appropriate due to the noisy nature of the hashtags.

On the other hand, the Twitter-LDA [Zhao et al., 2011] and the behaviour-topic model
[Qiu et al., 2013] were designed to explicitly model tweets. In contrary to LDA, both
models are not admixture models since they impose a limit of only one topic per
document. The behaviour-topic model analyses tweets’ posting behaviour39 for each
topic, and uses them for user recommendation. Alternatively, the biterm topic model
[Yan et al., 2013] uses only the biterm co-occurrences to model tweets, discarding
document level information. Both the biterm topic model and the Twitter-LDA do
not incorporate any auxiliary information. All the mentioned topic models also have
a limitation in that the number of topics need to be specified in advance, which is
difficult since this number is not known.

Some recent work makes use of the link between documents (e.g., citations) in
topic modelling, including the CNTM in Chapter 7, the relational topic model [Chang
and Blei, 2010], the Poisson mixed-topic link model [Zhu et al., 2013] and the Link-
PLSA-LDA [Nallapati et al., 2008]. Some other work models the authors’ network
information, such as the Topic-Link LDA, which models author community using
a generalised linear model, and the Author Cite Topic Model [Kataria et al., 2011],
which models the authors citation network. However, these models are parametric
in nature and can be restrictive. On the contrary, Lloyd et al. [2012] use a very
flexible nonparametric model for network data by utilising random function priors,
but they do not model text. We note that the TNTM makes use of the random
function network model of Lloyd et al. [2012], but we apply modifications to the
random function network model that leads to significant model improvement, this is
discussed in the next section.

8.3 The Twitter Network Topic model

The TNTM makes use of the accompanying hashtags, authors, and followers network
to model tweets better. The TNTM is composed of two main components: a HPYP
topic model for the text and hashtags, and a GP based random function network
model for the followers network. The authorship information serves to connect the
two together. The HPYP topic model is illustrated by region b© in Figure 8.1 while
the network model is captured by region a©.

39Whether they are original post or retweet.
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Figure 8.1: Graphical model for the Twitter Network Topic model (TNTM). The latent
variables are unshaded and the observed variables are shaded. The TNTM is com-
posed of a HPYP topic model (region b©) and a GP based random function network
model (region a©). The author–topic distributions ν serve to link the two together.
Each tweet is modelled with a hierarchy of document–topic distributions denoted by
η, θ′, and θ, where each is attuned to the whole tweet, the hashtags, and the words, in
that order. With their own topic assignments z′ and z, the hashtags y and the words
w are separately modelled. They are generated from the topic–hashtag distributions
ψ′ and the topic–word distributions ψ respectively. The variables µ0 , µ1 and γ are
priors for the respective PYPs. The connections between the authors are denoted by
x, which are modelled by random function F .

8.3.1 HPYP Topic Model

We design the HPYP topic model as follows. For the word distributions, we first
generate a parent word distribution prior γ for all topics:

γ ∼ PYP(αγ, βγ, Hγ) , (8.1)

where Hγ is a discrete uniform distribution over the complete word vocabulary
V .40 Then, we sample the hashtag distribution ψ′k and word distribution ψk for each

40The complete word vocabulary contains words and hashtags seen in the corpus.
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topic k, with γ as the base distribution:

ψ′k | γ ∼ PYP(αψ′k , βψ′k , γ) , (8.2)

ψk | γ ∼ PYP(αψk , βψk , γ) , for k = 1, . . . , K . (8.3)

Note that the tokens of the hashtags are shared with the words, that is, the hashtag
#happy shares the same token as the word happy, and are thus treated as the same
word. This treatment is important since some hashtags are used as words instead
of labels.41 Additionally, this also allows any words to be hashtags, which will be
useful for hashtag recommendation.

For the topic distributions, we generate a global topic distribution µ0 that serves
as a prior. Then generate the author–topic distribution νi for each author i, and a
miscellaneous topic distribution µ1 to capture topics that deviate from the authors’
usual topics:

µ0 ∼ GEM(αµ0 , βµ0) , (8.4)

µ1 | µ0 ∼ PYP(αµ1 , βµ1 , µ0) , (8.5)

νi | µ0 ∼ PYP(ανi , βνi , µ0) , for i = 1, . . . , A . (8.6)

For each tweet d, given ν and the observed author ad , we sample the document–topic
distribution ηd , as follows:

ηd | ad, ν ∼ PYP(αηd , βηd , νad) , for d = 1, . . . , D . (8.7)

Next, we generate the topic distributions for the observed hashtags (θ′d) and the
observed words (θd), following the technique used in the adaptive topic model [Du
et al., 2012a]. We explicitly model the influence of hashtags to words, by generating
the words conditioned on the hashtags. The intuition comes from hashtags being the
themes of a tweet, and they drive the content of the tweet. Specifically, we sample
the mixing proportions ρθ′d , which control the contribution of ηd and µ1 for the base
distribution of θ′d , and then generate θ′d given ρθ′d :

ρθ′d ∼ Beta
(

λ
θ′d
0 , λ

θ′d
1

)
, (8.8)

θ′d | µ1, ηd ∼ PYP
(

αθ′d , βθ′d , ρθ′d µ1 + (1−ρθ′d)ηd

)
. (8.9)

We set θ′d and ηd as the parent distributions of θd . This flexible configuration allows
us to investigate the relationship between θd , θ′d and ηd , that is, we can examine if θd

is directly determined by ηd , or through the θ′d . The mixing proportions ρθd and the

41For instance, as illustrated by the following tweet: i want to get into #photography. can someone
recommend a good beginner #camera please? i dont know where to start?
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topic distribution θd is generated similarly:

ρθd ∼ Beta
(

λθd
0 , λθd

1

)
, (8.10)

θd | ηd, θ′d ∼ PYP
(

αθd , βθd , ρθd ηm + (1−ρθd)θ′d
)

. (8.11)

The hashtags and words are then generated in a similar fashion to LDA. For the m-th
hashtag in tweet d, we sample a topic z′dm and the hashtag ydm by

z′dm | θ′d ∼ Discrete
(
θ′d
)

, (8.12)

ydm | z′dm, ψ′ ∼ Discrete
(

ψ′z′dm

)
, for m = 1, . . . , Md , (8.13)

where Md is the number of seen hashtags in tweet d. While for the n-th word in
tweet d, we sample a topic zdn and the word wdn by

zdn | θd ∼ Discrete(θd) , (8.14)

wdn | zdn, ψ ∼ Discrete
(
ψzdn

)
, for n = 1, . . . , Nd , (8.15)

where Nd is the number of observed words in tweet d. We note that all above α, β

and λ are the hyperparameters of the model. We show the importance of the above
modelling with ablation studies in Section 8.8. Although the HPYP topic model may
seem complex, it is actually a simple network of PYP nodes since all distributions on
the probability vectors are modelled by the PYP. The advantage of such modelling
was discussed in Chapter 5.

8.3.2 Random Function Network Model

The network modelling is connected to the HPYP topic model via the author–topic
distributions ν, where we treat ν as inputs to the GP in the network model. The GP,
represented by F , determines the link between two authors (xij), which indicates the
existence of the social links between author i and author j. For each pair of authors,
we sample their connections with the following random function network model:

Qij | ν ∼ F (νi, νj) , (8.16)

xij |Qij ∼ Bernoulli
(
s(Qij)

)
, for i = 1, . . . , A; j = 1, . . . , A , (8.17)

where s(·) is the sigmoid function:

s(t) =
1

1 + e−t . (8.18)

By marginalising out F , we can write Q ∼ GP(ς, κ), where Q is a vectorised collection
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of Qij ,42 ς denotes the mean vector and κ is the covariance matrix of the GP:

ςij = Sim(νi, νj) , (8.19)

κij,i′ j′ =
s2

2
exp

(
−
∣∣Sim(νi, νj)− Sim(νi′ , νj′)

∣∣2
2l2

)
+ σ2 I(ij = i′ j′) , (8.20)

where s, l and σ are the hyperparameters associated to the kernel. Sim(·, ·) is a
similarity function that has a range between 0 and 1. In this chapter, we choose the
cosine similarity the similarity function due to ease of computation and its popularity
in natural language processing:

Sim(νi, νj) =
νi · νj

|νi||νj|
. (8.21)

Note that our kernel definition is different from Lloyd et al. [2012]. We define the
kernel function such that the authors with similar topics are connected, while the
original definition fails to consider the relation between author–topic distributions.
We present the list of variables used by the TNTM in Table 8.1.

8.3.3 Relationships with Other Models

The TNTM is related to many existing models after removing certain components of
the model. When hashtags and the network components are removed, the TNTM
is reduced to a nonparametric variant of the ATM. Oppositely, if authorship infor-
mation is discarded, the TNTM resembles the correspondence LDA [Blei and Jordan,
2003], although it differs in that it allows hashtags and words to be generated from a
common vocabulary.

In contrast to existing parametric models, the network model in the TNTM pro-
vides possibly the most flexible way of network modelling via a nonparametric
Bayesian prior (GP), following Lloyd et al. [2012]. Different to Lloyd et al. [2012],
we propose a new kernel function that fits our purpose better and achieves signifi-
cant improvement over the original kernel function. Moreover, we jointly model the
GP and the HPYP, which brings significant challenges for posterior inference.

8.4 Representation and Model Likelihood

As with previous chapters, we represent the TNTM using the CRP representation dis-
cussed in Section 5.3. However, since the PYP variables in the TNTM can have multi-
ple parents, we extend the representation following Du et al. [2012a]. The distinction
is that we store multiple tables counts for each PYP, to illustrate, tN→Pk represents

42Q = (Q11, Q12, . . . , QAA)
T, note that ς and κ follow the same indexing.



114 Modelling Text and Author Network on Tweets

Table 8.1: List of variables for the Twitter Network Topic model (TNTM).

Variable Name Description

zdn Word topic Topic label for word wdn .

z′dm Hashtag topic Topic label for hashtag ydm .

wdn Word The n-th observed word in document d.

ydm Hashtag
The m-th observed hashtag in docu-
ment d.

xij Link
Binary variable on author i following
author j.

Qij Link strength Strength for the link xij .

ad Author Author for document d.

ψk Topic–word distribution
Probability distribution in generating
words for topic k.

ψ′k Topic–hashtag distribution
Probability distribution in generating
hashtags for topic k.

θd Document–topic distribution
Probability distribution in generating
word topics for document d.

θ′d Document–topic distribution
Probability distribution in generating
hashtag topics for document d.

ηd Document–topic prior Topic prior for θ′d and θd .

νa Author–topic distribution
Probability distribution in generating
topics for author a.

γ Word/hashtag distribution Word or hashtag prior for ψk and ψ′k .

µ1
Miscellaneous topic

distribution
Topic prior for θ′d .

µ0 Global topic distribution Topic prior for νa and µ1 .

αN Discount Discount parameter of the PYP N .

βN Concentration Concentration parameter of the PYPN .

HN Base distribution Base distribution of the PYP N .

ρN Mixing proportion
Mixing proportion for the base distri-
bution of PYP N .

λN Shape Shape parameter for ρN .

ς Mean function Mean function for generating Q.

κ Covariance Covariance function for generating Q.
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the number of tables in PYP N serving dish k that are contributed to the customer
counts in PYP P , cPk . Similarly, the total table counts that contribute to P is denoted
as TN→P = ∑k tN→Pk . Note the number of tables in PYP N is tNk = ∑P tN→Pk , while
the total number of tables is TN = ∑P TN→P .

Again, we use bold face capital letters to denote the set of all relevant lower case
variables. For example, we denote W and Y as the set of all words and hashtags; Z
and Z′ as the set of all topic assignments for the words and the hashtags; T as the set
of all table counts and C as the set of all customer counts; and we introduce Ξ as the
set of all hyperparameters. By marginalising out the latent variables, we write down
the model likelihood corresponding to the HPYP topic model in terms of the counts:

p(Z, Z′, T, C |W, Y, Ξ) ∝ p(Z, Z′, W, Y, T, C |Ξ)

∝ f (µ0) f (µ1)

(
A

∏
i=1

f (νi)

)(
K

∏
k=1

f (ψ′k) f (ψk)

)
f (γ)

×
(

D

∏
d=1

f (ηd) f (θ′d) f (θd)g
(
ρθ′d
)

g
(
ρθ

d
))( |V|

∏
v=1

(
1
|V|

)tγ
v
)

,

(8.22)

where f (N ) is the modularised likelihood corresponding to node N , as defined by
Equation (5.9), and g(ρ) is the likelihood corresponding to the probability ρ that
controls which parent node to send a customer to. These likelihoods are defined as

f (N ) =

(
βN
∣∣αN )TN(

βN
)

CN

K

∏
k=1

ScNk
tNk , αN

(
cNk
tNk

)−1

, (8.23)

g(ρN ) = B
(

λN0 + TN→P0 , λN1 + TN→P1
)

, (8.24)

for N ∼ PYP
(
αN , βN , ρNP0 + (1−ρN )P1

)
. Note that (x)T and (x|y)T denote the

Pochhammer symbol, and Sx
y,a is the generalised Stirling number, as discussed in

Section 5.3. Recall that B(a, b) denotes the beta function that normalises a Dirichlet
distribution, defined as follows:

B(a, b) =
Γ(a) Γ(b)
Γ(a + b)

. (8.25)

Note that in Equation (8.22), the topic assignments Z are implicitly captured by the
following customer counts:

cθd
k =

Nd

∑
n=1

I(zdn = k) , (8.26)
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while the topic assignments Z′ are implicitly captured by

cθ′d
k = tθd→θ′d

k +
Md

∑
m=1

I(zdm = k) . (8.27)

For the random function network model, the conditional posterior can be derived as

p(Q |X, ν, Ξ) ∝ p(X, Q | ν, Ξ)

∝

(
A

∏
i=1

A

∏
j=1

p(xij |Qij)

)
p(Q | ν, Ξ)

∝

(
A

∏
i=1

A

∏
j=1

s(Qij)
xij
(

1− s(Qij)
)1−xij

)

× |κ|− 1
2 exp

(
− 1

2
(Q− ς)T κ−1 (Q− ς)

)
. (8.28)

The full posterior likelihood is thus the product of the topic model posterior likeli-
hood (Equation (8.22)) and the network posterior likelihood (Equation (8.28)):

p(Q, Z, Z′, T, C |X, W, Y, Ξ) = p(Z, Z′, T, C |W, Y, Ξ) p(Q |X, ν, Ξ) . (8.29)

8.5 Performing Posterior Inference on the TNTM

In the TNTM, combining a GP with a HPYP makes its posterior inference non-trivial.
Hence, we employ approximate inference by alternatively performing MCMC sam-
pling on the HPYP topic model and the network model, conditioned on each other.
For the HPYP topic model, we employ the flexible framework discussed in Chapter 5
to perform collapsed blocked Gibbs sampling. For the network model, we derive a
Metropolis-Hastings (MH) algorithm based on the elliptical slice sampler [Murray
et al., 2010]. In addition, the author–topic distributions ν connecting the HPYP and
the GP are sampled with an MH scheme since their posteriors do not follow a stan-
dard form. We note that the PYPs in this chapter can have multiple parents, so we
extend the framework in Chapter 5 to allow for this.

8.5.1 Collapsed Blocked Gibbs Sampler for the HPYP Topic Model

The collapsed Gibbs sampling for the HPYP topic model in TNTM is similar to the
procedure in Section 5.4, although there are two main differences. The first difference
is that we need to sample the topics for both words and hashtags, each with a dif-
ferent conditional posterior compared to that of Section 5.4. While the second is due
to the PYPs in TNTM can have multiple parents, thus an alternative to decrementing
the counts is required. Below, we discuss the differences in the inference procedure.
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8.5.1.1 Decrementing the Counts Associated with a Word or a Hashtag

When we remove a word or a hashtag during inference, we decrement by one the
customer count from the PYP associated with the word or the hashtag, that is, cθd

k for

word wdn (zdn = k) and cθ′d
k for hashtag ydm (z′dm = k). Decrementing the customer

count may or may not decrement the respective table count. However, if the table
count is decremented, then we would decrement the customer count of the parent
PYP. This is relatively straightforward in Section 5.4.1 since the PYPs have only one
parent. Here, when a PYP N has multiple parents, we would sample for one of
its parent PYPs and decrement the table count corresponding to the parent PYP.
Although not the same, the rationale of this procedure follows Section 5.4.1.

We explain in more details below. When the customer count cNk is decremented,
we introduce an auxiliary variable uNk that indicates which parent of N to remove a
table from, or none at all. The sample space for uNk is the P parent nodes P1 , . . . ,PP

of N , plus ∅. When uNk is equal to Pi , we decrement the table count tN→Pi
k and

subsequently decrement the customer count cPi
k in node Pi . If uNk equals to ∅, we

do not decrement any table count. The process is repeated recursively as long as a
customer count is decremented, that is, we stop when uNk = ∅.

The value of uNk is sampled as follows:

p
(
uNk
)
=

 tN→Pi
k /cNk if uNk = Pi

1−∑Pi
p
(
uNk = Pi

)
if uNk = ∅ .

(8.30)

To illustrate, when a word wdn (with topic zdn) is removed, we decrement cθd
zdn , that is,

cθd
zdn becomes cθd

zdn − 1. We then determine if this word contributes to any table in node
θd by sampling uθd

zdn from Equation (8.30). If uθd
zdn = ∅, we do not decrement any table

count and proceed with the next step in Gibbs sampling; otherwise, uθd
zdn can either

be θ′d or ηd , in these cases, we would decrement t
θd→u

θd
zdn

zdn and c
u

θd
zdn

zdn , and continue the
process recursively.

We present the decrementing process in Algorithm 8.1. To remove a word wdn

during inference, we would need to decrement the counts contributed by wdn (and
zdn). For the topic side, we decrement the counts associated with node N = θd with
group k = zdn using Algorithm 8.1. While for the vocabulary side, we decrement the
counts associated with the node N = ψzdn with group k = wdn . The effect of the
word on the other PYP variables are implicitly considered through recursion.

Note that the procedure to decrementing a hashtag ydm is similar, in this case,
we decrement the counts for N = θ′d with k = z′dm (topic side), then decrement the
counts for N = ψ′z′dm

with k = ydm (vocabulary side).



118 Modelling Text and Author Network on Tweets

Algorithm 8.1 Decrementing counts associated with a PYP node N and group k.

1. Decrement the customer count cNk by one.

2. Sample an auxiliary variable uNk with Equation (8.30).

3. For the sampled uNk , perform the following:

(a) If uNk = ∅, exit the algorithm.

(b) Otherwise, decrement the table count tN→uNk
k by one and repeat Steps 2 – 4

by replacing N with uNk .

8.5.1.2 Sampling a New Topic for a Word or a Hashtag

After decrementing, we sample a new topic for the word or the hashtag. The sam-
pling process follows the procedure discussed in Section 5.4.2, but with different
conditional posteriors (for both the word and the hashtag). The full conditional pos-
terior probability for the collapsed blocked Gibbs sampling can be derived easily. For
instance, the conditional posterior for sampling the topic zdn of word wdn is

p(zdn, T, C |Z−dn, Z′, W, Y, T−dn, C−dn, Ξ) =
p(Z, Z′, T, C |W, Y, Ξ)

p(Z−dn, Z′, T−dn, C−dn |W, Y, Ξ)
,

(8.31)

which can then be easily decomposed into simpler form (see discussion in Sec-
tion 5.4.2) using Equation (8.22). Here, the superscript 2−dn indicates the word wdn

and the topic zdn are removed from the respective sets. Similarly, the conditional
posterior probability for sampling the topic z′dm of hashtag ydm can be derived as

p(z′dm, T, C |Z, Z′−dm, W, Y, T−dm, C−dm, Ξ) =
p(Z, Z′, T, C |W, Y, Ξ)

p(Z, Z′−dm, T−dm, C−dm |W, Y, Ξ)
,

(8.32)

where the superscript 2−dm signals the removal of the hashtag ydm and the topic z′dm .

As in Section 5.4.2, we compute the posterior for all possible changes to T and C
corresponding to the new topic (for zdn or z′dm). We then sample the next state using
a Gibbs sampler.

8.5.2 Estimating the Probability Vectors of PYPs with Multiple Parents

Following Section 5.4.4, we estimate the various probability distributions of the PYPs
by their posterior means. For a PYP N with a single PYP parent P1 , as discussed in
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Section 5.4.4, we can estimate its probability vector N̂ = (N̂1, . . . , N̂K) as

N̂k = E[Nk |Z, Z′, W, Y, T, C, Ξ]

=

(
αN TN + βN

)
E[P1k |Z, Z′, W, Y, T, C, Ξ] + cNk − αN TNk

βN + CN
, (8.33)

which lets one analyse the probability vectors in a topic model using recursion.

Unlike the above, the posterior mean is slightly more complicated for a PYP N
that has multiple PYP parents P1, . . . ,PP . Formally, we define the PYP N as

N |P1, . . . ,PP ∼ PYP
(

αN , βN , ρN1 P1 + · · ·+ ρNP PP

)
, (8.34)

where the mixing proportion ρN = (ρN1 , . . . , ρNP ) follows a Dirichlet distribution with
parameter λN = (λN1 , . . . , λNP ):

ρN ∼ Dirichlet
(
λN
)

. (8.35)

Before we can estimate the probability vector, we first estimate the mixing proportion
with its posterior mean given the customer counts and table counts:

ρ̂Ni = E[ρNi |Z, Z′, W, Y, T, C, Ξ] =
TN→Pi + λNi
TN + ∑i λNi

. (8.36)

Then, we can estimate the probability vector N̂ = (N̂1, . . . , N̂K) by

N̂k =

(
αN TN + βN

)
ĤNk + cNk − αN TNk

βN + CN
, (8.37)

where ĤN = (ĤN1 , . . . , ĤNK ) is the expected base distribution:

ĤNk =
P

∑
i=1

ρ̂Ni E[Pik |Z, Z′, W, Y, T, C, Ξ] . (8.38)

We note that a PYP with a single parent is simply a special case, which can be
achieved by setting ρN1 to one and the other ρNi to zero.

With these formulations, all the topic distributions and the word distributions
in the TNTM can be reconstructed from the customer counts and table counts. For
instance, the author–topic distribution νi of each author i can be determined recur-
sively by first estimating the topic distribution µ0 . The word distributions for each
topic are similarly estimated.
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8.5.3 MH Algorithm for the Random Function Network Model

Here, we discuss how we learn the topic distributions µ0 and ν from the random
function network model. We configure the MH algorithm to start after running one
thousand iterations of the collapsed blocked Gibbs sampler, this is to we can quickly
initialise the TNTM with the HPYP topic model before running the full algorithm.
In addition, this allows us to demonstrate the improvement to the TNTM due to the
random function network model.

To facilitate the MH algorithm, we have to represent the topic distributions µ0

and ν explicitly as probability vectors, that is, we do not store the customer counts
and table counts for µ0 and ν after starting the MH algorithm. In the MH algorithm,
we propose new samples for µ0 and ν, and then accept or reject the samples. The
details for the MH algorithm is as follow.

In each iteration of the MH algorithm, we use the Dirichlet distributions as pro-
posal distributions for µ0 and ν:

q(µnew
0 | µ0) = Dirichlet(βµ0 µ0) , (8.39)

q(νnew
i | νi) = Dirichlet(βνi νi) . (8.40)

These proposed µ0 and ν are sampled given the their previous values, and we note
that the first µ0 and ν are computed using the technique discussed in Section 8.5.2.
These proposed samples are subsequently used to sample Qnew. We first compute
the quantities ςnew and κnew using the proposed µnew

0 and νnew with Equation (8.19)
and Equation (8.20). Then we sample Qnew given ςnew and κnew using the elliptical
slice sampler (see Murray et al. [2010]):

Qnew ∼ GP(ςnew, κnew) . (8.41)

Finally, we compute the acceptance probability A′ = min(A, 1), where

A =
p(Qnew |X, νnew, Ξ)

p(Qold |X, νold, Ξ)

f ∗(µnew
0 | νnew, T) ∏A

i=1 f ∗(νnew
i |T)

f ∗(µold
0 | νold, T) ∏A

i=1 f ∗(νold
i |T)

× q(µold
0 | µnew

0 ) ∏A
i=1 q(νold

i | νnew
i )

q(µnew
0 | µold

0 ) ∏A
i=1 q(νnew

i | νold
i )

, (8.42)

and we define f ∗(µ0 | ν, T) and f ∗(ν |T) as

f ∗(µ0 | ν, T) =
K

∏
k=1

(µ0k)
tµ1
k +∑A

i=1 νi , (8.43)

f ∗(νi |T) =
K

∏
k=1

(νik)
∑D

d=1 t
ηd
k I(ad=i) . (8.44)
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Algorithm 8.2 Performing the MH algorithm for one iteration.

1. Propose a new µnew
0 with Equation (8.39).

2. For each author i, propose a new νnew
i with Equation (8.40).

3. Compute the mean function ςnew and the covariance matrix κnew with Equa-
tion (8.19) and Equation (8.20).

4. Sample Qnew from Equation (8.41) using the elliptical slice sampler from [Mur-
ray et al., 2010].

5. Accept or reject the samples with acceptance probability from Equation (8.42).

The f ∗(·) corresponds to the topic model posterior of the variables µ0 and ν after we
represent them as probability vectors explicitly. Note that we treat the acceptance
probability A as 1 when the expression in Equation (8.42) evaluates to more than
1. We then accept the proposed samples with probability A, if the sample are not
accepted, we keep the respective old values. This completes one iteration of the MH
scheme. We summarise the MH algorithm in Algorithm 8.2.

We note that there are some changes to the collapsed blocked Gibbs sampler
after we represent µ0 and ν as probability vectors explicitly. First, as previously
mentioned, we do not store their customer counts and the table counts.43 As a
consequence, we stop decrementing the counts at node µ0 and νi . Second, we now
sample the topics conditioned on µ0 and ν. Fortunately, we do not need to re-derive
the collapsed blocked Gibbs sampler, we simply replace the modularised likelihood
f (µ0) and f (νi) in Equation (8.22) by f ∗(µ0 | ν, T) and f ∗(νi |T) respectively and
perform the collapsed blocked Gibbs sampling as usual. Lastly, we do not sample the
hyperparameters that belong to µ0 and ν. We discuss the hyperparameter sampler
in the next section.

8.5.4 Hyperparameter Sampling

As in previous chapters, we sample the hyperparameters β using an auxiliary vari-
able sampler while leaving α fixed. We note that the auxiliary variable sampler for
PYPs that have multiple parents are identical to that of PYPs with single parent, since
the sampler only used the total customer counts CN and the total table counts TN

for a PYP N . Thus we refer the readers to Section 5.4.3 for details.
We would like to point out that hyperparameter sampling is performed for all

PYPs in TNTM for the first one thousand iterations. After that, as µ0 and ν are repre-

43However, in the implementation we actually store the customer counts for ν, as they correspond to
the summation term in Equation (8.44), though this is only for optimisation reason.
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Algorithm 8.3 Full inference algorithm for the TNTM.

1. Initialise the HPYP topic model by assigning random topic to the latent topic
zdn associated with each word wdn , and to the latent topic z′dm associated with
each hashtag ydm . Then update all the relevant customer counts C and ta-
ble counts T using Equation (8.26) and Equation (8.27), the table counts are
initialised equally such that the total table counts are about half of the cus-
tomer counts.

2. For each word wdn in each document d, perform the following:

(a) Decrement the counts associated with wdn (see Section 8.5.1.1).

(b) Blocked sample a new topic for zdn and corresponding customer counts C
and table counts T (with Equation (8.31)).

(c) Update (increment counts) the topic model based on the sample.

3. For each hashtag ydm in each document d, perform the following:

(a) Decrement the counts associated with ydm (see Section 8.5.1.1).

(b) Blocked sample a new topic for z′dn and corresponding customer counts C
and table counts T (with Equation (8.32)).

(c) Update (increment counts) the topic model based on the sample.

4. Sample the hyperparameter βN for each PYP N (see Section 8.5.4).

5. Repeat Steps 2 – 4 for 1,000 iterations.

6. Alternatingly perform the MH algorithm (Algorithm 8.2) and the collapsed
blocked Gibbs sampler conditioned on µ0 and ν (see Section 8.5.1).

7. Sample the hyperparameter βN for each PYP N except for µ0 and ν (see Sec-
tion 8.5.4).

8. Repeat Steps 6 – 7 until the model converges or when a fix number of iterations
is reached.

sented as probability vectors explicitly, we only sample the hyperparameters for the
other PYPs (except µ0 and ν). We note that sampling the concentration parameters
allows the topic distributions of each author to vary, that is, some authors have few
very specific topics and some other authors can have a wider range of topics. For
simplicity, we fix the kernel hyperparameters s, l and σ to 1. Additionally, we also
make the priors for the mixing proportions uninformative by setting the λ to 1. We
summarise the full inference algorithm for the TNTM in Algorithm 8.3.
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Table 8.2: Keywords for querying the datasets in this chapter. The T6 dataset is
queried with six hashtags for diversity. While the other three datasets are queried
with ten keywords each, as described in Mehrotra et al. [2013].

Dataset Queries

T6 #sport, #music, #finance, #politics, #science and #tech

Generic
business, design, family, food, fun, health, movie, music,
space, sport

Specific
Apple, baseball, Burgerking, cricket, France, Mcdonalds,
Microsoft, Obama, Sarkozy, United States

Events
attack, conference, Flight 447, Iran election, Jackson, Lakers,
recession, scandal, swine flu, T20

8.6 Data

For evaluation of the TNTM, we construct a tweet corpus from the Twitter 7 dataset
[Yang and Leskovec, 2011],44 This corpus is queried using the hashtags #sport, #music,
#finance, #politics, #science and #tech, chosen for diversity. We remove the non-English
tweets with langid.py [Lui and Baldwin, 2012]. We obtain the data on the followers
network from Kwak et al. [2010].45 However, note that this followers network data
is not complete and does not contain information for all authors. Thus we filter out
the authors that are not part of the followers network data from the tweet corpus.
Additionally, we also remove authors who have written less than fifty tweets from
the corpus. We name this corpus T6 since it is queried with six hashtags. It is consists
of 240,517 tweets with 150 authors after filtering.

Besides the T6 corpus, we also use the tweet datasets described in Mehrotra et al.
[2013]. The datasets contains three corpora, each of them is queried with exactly
ten query terms. The first corpus, named the Generic Dataset, are queried with
generic terms. The second is named the Specific Dataset, which is composed of
tweets on specific named entities. Lastly, the Events Dataset is associated with certain
events. The query terms are presented in Table 8.2. The datasets are mainly used
for comparing the performance of the TNTM against the tweet pooling techniques
in Mehrotra et al. [2013]. We present a summary of the tweet corpora used in this
chapter in Table 8.3.

44http://snap.stanford.edu/data/twitter7.html (last accessed 10 December 2013)
45http://an.kaist.ac.kr/traces/WWW2010.html (last accessed 10 December 2013)

http://snap.stanford.edu/data/twitter7.html
http://an.kaist.ac.kr/traces/WWW2010.html
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Table 8.3: Summary of the datasets used in this chapter, showing the number of
tweets (D), authors (A), unique word tokens (|V|), and the average number of words
and hashtags in each tweet. The T6 dataset is queried with six different hashtags
and thus has a higher number of hashtags per tweet. The last three datasets are each
queried with ten keywords, shown in Table 8.2. We note that there is a typo on the
number of tweets for the Events Dataset in Mehrotra et al. [2013], the correct number
is 107,128.

Dataset Tweets Authors Vocabulary Words/Tweet Hashtags/Tweet

T6 240 517 150 5 343 6.35 1.34
Generic 359 478 213 488 14 581 6.84 0.10
Specific 214 580 116 685 15 751 6.31 0.25
Events 107 128 67 388 12 765 5.84 0.17

8.7 Text Preprocessing

We employ a simple preprocessing pipeline for the tweet corpora. We keep two lists
for each tweet, one for the observed words and one for the observed hashtags in that
tweet. we remove the prefix # from the observed hashtags such that the hashtags
share the same token as the words. Additionally, for every seen hashtag in a tweet,
we add a copy of the hashtag into the list of words, this is because occasionally
the hashtags are used as words in tweets, such as when they are used as part of
a sentence.

Next, we perform standard preprocessing techniques such as decapitalising the
words and the hashtags, removing stop words, commonly occurred words and rarely
occurred words. We also discard the url from the tweets.

Finally, we randomly select 90 % of the dataset as training documents and use
the rest for testing. We note that no special consideration is needed in splitting the
dataset. The test set can contains unseen hashtags and unseen words, which is unlike
Bundschus et al. [2009], where the hashtags in the test set need to be seen in training
set. We also note that we perform no word normalisation to prevent any loss of
meaning of the noisy text.

8.8 Experiments and Results

We consider several tasks to evaluate the TNTM. The first task involves comparing
the TNTM with existing baselines on performing topic modelling on tweets. We also
compare the TNTM with the random function network model on modelling the fol-
lowers network. Next, we evaluate the TNTM with ablation studies, in which we
perform comparison with the TNTM itself but with each component taken away.
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Additionally, we evaluate the clustering performance of the TNTM and topic co-
herence of the learned topics, we compare the TNTM against the state-of-the-art
tweets-pooling LDA method in Mehrotra et al. [2013].

8.8.1 Experiment Settings

In all the following experiments, we vary the discount parameters α for the topic
distributions µ0 , µ1 , νi , ηm , θ′m , and θm , we set α to 0.7 for the word distributions
ψ, φ′ and γ to induce power-law behaviour [Goldwater et al., 2011]. We initialise the
concentration parameters β to 0.5, noting that they are learned automatically during
inference, we set their hyperprior to Gamma(0.1, 0.1) for a vague prior. We fix the
hyperparameters λ, s, l and σ to 1, as we find that their values have no significant
impact on the model performance.46

In the following evaluations, we run the full inference algorithm for 2,000 itera-
tions for the models to converge. We note that the MH algorithm only starts after
1,000 iterations, as discussed in Section 8.5.3. We repeat each experiment five times
to reduce the estimation error of the evaluation measures.

8.8.2 Goodness-of-fit Test

We compare the TNTM with the HDP-LDA and a nonparametric author-topic model
(ATM) on fitting the text data (words and hashtags). Their performances are mea-
sured using perplexity on the test set (see Section 5.5.2). However, since tweets are
short, we adopt the left to right algorithm [Wallach et al., 2009b] in calculating the
test set perplexity, rather than using the document completion method described in
Section 5.5.2. In the left to right algorithm, the test set perplexity is computed using
a product of conditional probability. The perplexity is

Perplexity(Y, W) = exp

(
− log p

(
Y, W | ν, µ1, ψ, ψ′

)
∑D

d=1 Nd + Md

)
, (8.45)

where the joint likelihood p
(
W, Y | ν, µ1, ψ, ψ′

)
is broken into

p
(
Y, W | ν, µ1, ψ, ψ′

)
=

D

∏
d=1

Md

∏
m=1

p(ydm | yd1, . . . , yd,m−1, ν, µ1, ψ′)

×
D

∏
d=1

Nd

∏
n=1

p(wdn |wd1, . . . , wd,n−1, yd, ν, µ1, ψ) . (8.46)

The conditional probabilities in Equation (8.46) are sequentially evaluated (thus the
name left to right), by repeatedly sampling the document–topic distributions given

46We vary these hyperparameters over the range of 0.01 to 10 during testing.
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Table 8.4: Test perplexity and network log likelihood comparisons between the HDP-
LDA, the nonparametric ATM, the random function network model and the TNTM.
Lower perplexity indicates better model fitting. The TNTM significantly outperforms
the other models in term of model fitting.

Model Test Perplexity Network Log Likelihood

HDP-LDA 840.03± 15.7 N/A

Nonparametric ATM 664.25± 17.76 N/A

Random Function N/A −557.86± 11.2

TNTM 505.01 ± 7.8 −500.63 ± 13.6

the seen words and/or hashtags. For example, the conditional probability for hash-
tag ydm is evaluated as

p(ydm | yd1, . . . , yd,m−1, ν, µ1, ψ′) =
∫

θ′d
p(ydm | θ′d, ψ′) p(θ′d | yd1, . . . , yd,m−1, ν, µ1)dθ′d

≈ 1
R

R

∑
i=1

p
(

ydm

∣∣∣ θ̂
′ (i)
d , ψ′

)
=

1
R

R

∑
i=1

K

∑
k=1

θ̂
′ (i)
dk ψ′kydm

, (8.47)

where θ̂
′ (i)
d is a Monte Carlo sample of θ′d from p(θ′d | yd1, . . . , yd,m−1, ν, µ1). The pro-

cedure to estimate the conditional probability for word wdn is similar.
We also compare the TNTM against the original random function network model

in terms of the log likelihood of the network data, given by log p(X | ν). We present
the comparison of the perplexity and the network log likelihood in Table 8.4. We note
that for the network log likelihood, the less negative the better. From the result, we
can see that the TNTM achieves a much lower perplexity compared to the HDP-LDA
and the nonparametric ATM. Also, the nonparametric ATM is significantly better
than the HDP-LDA. This clearly shows that using more auxiliary information gives
a better model fitting. Additionally, we can also see that jointly modelling the text
and network data leads to a better modelling on the followers network.

8.8.3 Ablation Test

Next, we perform an extensive ablation study with the TNTM. The components that
are tested in this study are (1) authorship, (2) hashtags, (3) PYP µ1 , (4) connection
between PYP θ′d and θd , and (5) power-law behaviours on the PYPs. We compare the
full TNTM against variations in which each component is ablated (removed).

We discuss in details what happens to the TNTM when a component is ablated.
For the TNTM with the authorship component removed, we simply treat all tweets
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Table 8.5: Ablation test on the TNTM. The test perplexity and the network log likeli-
hood is evaluated on the TNTM against several ablated variants of the TNTM. Again,
lower perplexity means better model fitting. The result shows that each component
in the TNTM is important.

TNTM Model Test Perplexity Network Log Likelihood

No author 669.12± 9.3 N/A

No hashtag 1017.23± 27.5 −522.83± 17.7

No µ1 node 607.70± 10.7 −508.59± 9.8

No θ′- θ connection 551.78± 16.0 −509.21± 18.7

No power-law 508.64± 7.1 −560.28± 30.7

Full model 505.01 ± 7.8 −500.63 ± 13.6

as being written by a single author, that is, A = 1. This essentially changes ν into a
layer of PYP prior for the document–topic distributions η and removes the network
component. For the TNTM without hashtags, the hashtags are treated as part of the
words, that is, they are now captured by the variables W. In this ablated model, the
hashtags retain the # prefix, allowing us to distinguish the hashtags from words.

On the other hand, the TNTM with PYP µ1 removed and the TNTM with the
connection between θ′d and θd removed are simply just the respective models without
such components. For example, when µ1 is removed, θ′d now has a single parent,
which is ηd . This is similar for the case when the connection between θ′d and θ

is dropped, where now the θ has only one parent. Note that implementing these
models is straightforward with the flexible framework discussed in Chapter 5, since
we would only need to re-specify the models. Finally, removing the power-law be-
haviours in the PYPs is as simple as setting the discount parameter α to 0.

Table 8.5 presents the test set perplexity and the network log likelihood of these
models, it shows significant improvements of the TNTM over the ablated models.
From this, we see that the greatest improvement on perplexity is from modelling
the hashtags, which suggests that the hashtag information is the most important for
modelling tweets. Second to the hashtags, the authorship information is very impor-
tant as well. On the contrary, the improvement on perplexity is marginal when we
model the power-law behaviour in the PYPs, this implies that the words in tweets do
not necessarily exhibit a power-law behaviour, which is reasonable since the tweets
are too short. However, even though modelling the power-law behaviour is not that
important for perplexity, we see that the improvement on the network log likelihood
is best achieved by modelling the power-law. This is because the flexibility enables
us to learn the author–topic distributions better, and thus allowing the TNTM to fit
the network data better. This also suggests that the authors in the corpus tend to
focus on a specific topic rather than having a wide interest.
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8.8.4 Document Clustering and Topic Coherence

Mehrotra et al. [2013] shows that running LDA on pooled tweets rather than un-
pooled tweets gives significant improvement on clustering evaluation and topic co-
herence. In particular, they find that grouping tweets based on the hashtags provides
most improvement. In this section, we show that instead of resorting to such ad-hoc
method, the TNTM can achieve a significantly better performance. The clustering
evaluations are measured with purity and normalised mutual information (NMI, see
Section 5.5.4) , and topic coherence is measured by pointwise mutual information
(PMI) [Newman et al., 2009]. Since the ground truth labels are unknown, we use the
respective query terms as the ground truth labels for evaluations. Note that tweets
that satisfy multiple labels are removed. Given the learned model, we assign a tweet
to a cluster based on its dominant topic:

Dominant Topic(d) = arg max
k

ηdk . (8.48)

Next, we follows Mehrotra et al. [2013] and use the top ten words in each topic for
the computation of PMI. Denoting the top ten words of each topic k as ωk1 , . . . , ωk10 ,
the PMI is calculated as

PMI(ω) =
1

100K

K

∑
k=1

10

∑
i=1

10

∑
j=1

Score(ωki, ωkj) , (8.49)

where the score for each pair of word is given as

Score(ωki, ωkj) = log
p̂(ωki, ωkj)

p̂(ωki) p̂(ωkj)
. (8.50)

The p̂(·) is the empirical frequency of a word occurring in the tweet corpus, while
p̂(·, ·) is the empirical frequency of a pair of words co-occurring.

We perform the evaluations on the Generic, Specific and Events datasets for com-
parison purpose. We note the lack of network information in these datasets, and
thus we employ only the HPYP part of the TNTM. Additionally, since the purity can
trivially be improved by increasing the number of clusters, we limit the maximum
number of topics to twenty for a fair comparison. We present the results in Table 8.6
and Table 8.7. We can see that the TNTM outperforms the pooling method in all
aspects except on the Specific dataset, where it achieves the same purity as the best
pooling scheme, but worse PMI score compared to two of the pooling methods.
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Table 8.6: Clustering evaluations of the TNTM against the LDA with different pooling
schemes. Note that higher purity and NMI indicate better performance. The results
for the different pooling methods are obtained from Table 4 in Mehrotra et al. [2013].
The TNTM achieves better performance on the purity and the NMI for all datasets
except for the Specific dataset, where it obtains the same purity score as the best
pooling method.

Method/Model Purity NMI

Generic Specific Events Generic Specific Events
No pooling 0.49 0.64 0.69 0.28 0.22 0.39

Author 0.54 0.62 0.60 0.24 0.17 0.41
Hourly 0.45 0.61 0.61 0.07 0.09 0.32

Burstwise 0.42 0.60 0.64 0.18 0.16 0.33
Hashtag 0.54 0.68 0.71 0.28 0.23 0.42

TNTM 0.66 0.68 0.79 0.43 0.31 0.52

Table 8.7: Comparison of the topic coherence for the topics learned by the TNTM
against the LDA with different pooling methods. Here, the more positive the PMI,
the better perceived the learned topics are. The results for the different pooling
methods are obtained from Table 4 in Mehrotra et al. [2013]. The topics learned
by the TNTM have greater coherence compared to the pooling methods, with the
exception on the Specific dataset, where the corresponding PMI is lower than two of
the pooling schemes.

Method/Model PMI

Generic Specific Events
No pooling −1.27 0.47 0.47

Author 0.21 0.79 0.51
Hourly −1.31 0.87 0.22

Burstwise 0.48 0.74 0.58
Hashtag 0.78 1.43 1.07

TNTM 0.79 0.81 1.66

8.9 Qualitative Analysis of Learned Topic Models

Here, we present some qualitative analysis of the learned TNTM. We first inspect
the learned topic–word distributions, and we propose a way to perform automatic
topic labelling using hashtags. In addition, we analyse the author–topic distributions,
we find that the using the topic–hashtag distributions allows us to understand the
authors better.
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Table 8.8: Topical analysis of the learned TNTM on the T6 dataset, which displays the
top three hashtags and the top n words on six topics. Instead of manually assigning
a topic label to the topics, we find that the top hashtags can serve as the topic labels
for the topics.

Topic Top Hashtags Top Words

Topic 1 finance, money, economy
finance, money, bank, marketwatch,

stocks, china, group, shares, sales

Topic 2 politics, iranelection, tcot
politics, iran, iranelection, tcot,

tlot, topprog, obama, musiceanewsfeed

Topic 3 music, folk, pop
music, folk, monster, head, pop,

free, indie, album, gratuit, dernier

Topic 4 sports, women, asheville
sports, women, football, win, game,

top, world, asheville, vols, team

Topic 5 tech, news, jobs
tech, news, jquery, jobs, hiring,

gizmos, google, reuters

Topic 6 science, news, biology
science, news, source, study, scientists,

cancer, researchers, brain, biology, health

8.9.1 Automatic Topic Labelling

There have been recent attempts to label topics automatically in topic modelling. For
instance, Lau et al. [2011] use Wikipedia to extract labels for topics, and Mehdad
et al. [2013] use the entailment relations to select relevant phrases for topics. Recall
that in the previous chapters, we have manually assign a topic for each topic–word
distribution. Here, we show that using the hashtags allows us to get good labels for
the topics.

In Table 8.8, we display the top words from the topic–word distribution ψk for
each topic k, instead of manually assigning the topic labels, we display the top three
hashtags from the topic–hashtag distribution ψ′k . As we can see from Table 8.8, the
hashtags appear suitable to be used as topic labels. In fact, by empirically evaluating
the suitability of the hashtags in representing the topics, we consistently find that,
over 90 % of the hashtags are good candidates for the topic labels. Moreover, inspect-
ing the topics show that the major hashtags coincide with the query terms used in
constructing the T6 dataset, which is to be expected. This indirectly verifies that the
TNTM is working properly.

8.9.2 Analysing the Authors’ Topics

Next, we move on to analyse the topic areas for the authors in the T6 dataset, by
inspecting the learned author–topic distributions ν from the TNTM. We look at the
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Table 8.9: Inference on authors’ interest. The authors’ topics are represented by the
top hashtags from the topic–hashtag distributions ψ′. From the result, there is an
obvious relationship between the authors’ Twitter ID and their topics.

Twitter ID Dominant Topic

finance_yard finance, money, realestate
ultimate_music music, ultimatemusiclist, mp3

seriouslytech technology, web, tech
seriouspolitics politics, postrank, news

pr_science science, news, postrank

authors in which their Twitter IDs convey the topics they are interested in. We then
determine their dominant topic from the author–topic distributions ν :

Dominant Topic(i) = arg max
k

νik , (8.51)

We display the top hashtags corresponding to the authors’ dominant topic in
Table 8.9. We find that there is matching between the authors and their topics illus-
trated by hashtags. For example, the topic for the author finance_yard is represented
by #finance, #money and #realestate, this points out that the author mainly tweets
about finance related posts, which is unsurprising given that the Twitter ID contains
the word finance.

8.10 Diagnostics

In this section, we perform simple diagnostic checks to assess the learning algorithm
of the TNTM. In particular, we assess the convergence of the MCMC algorithm and
examine the mixing probabilities correspond to the PYPs with multiple parents.

8.10.1 Convergence Analysis of the MCMC Algorithms

We assess the convergence of the inference algorithm of the TNTM. In Figure 8.2,
we display the training log likelihoods, log p(W, Y |Z, Z′, ψ, ψ′), for the TNTM and
the corresponding ablated models. We also show the log likelihood for the TNTM
without running the MH algorithm on the network.

In Table 8.2, we can see that the full TNTM model converges much faster than
the other models, it also achieves a higher training log likelihood. Additionally, we
would like to point out that the log likelihood improves further when we start run-
ning the MH algorithm after the first 1,000 iterations, though the improvement is not
realised immediately after starting the MH algorithm. This indicates that modelling
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Figure 8.2: Convergence analysis for the TNTM and the ablated TNTM models.
The full model achieves the best training log likelihood and also with the shortest
amount of iterations. The purple line shows the convergence for the TNTM but with
the connection between θ′d and θd cut off. The blue line shows the convergence for
the TNTM but without using the authorship information. By comparing the full
inference algorithm of the TNTM with the collapsed Gibbs sampler of its HPYP
model, we can see that running the MH algorithm on the followers network leads to
further improvement on the training log likelihood.

the followers network leads to better modelling on the text. We note that not all
ablated models are shown here because some of the models converge to a lower log
likelihood, and thus removed for presentation reason. Another interesting observa-
tion in the experiments is that the acceptance rate of the MH algorithm is relatively
high (average 56 %), indicating a good proposal distribution in the MH sampler.

8.10.2 Inspecting the Mixing Proportions of the PYPs

The posterior of the mixing proportion ρN of a PYP N gives us insight on the in-
fluence of its parent PYPs. To illustrate, the mixing proportion ρθ′d is the proportion
of the influence of the miscellaneous topic distribution µ1 to θ′d , and 1− ρθ′d is the
proportion of influence from the author–topic distributions ν. We estimate the mix-
ing proportions with their posterior mean. The procedure to compute the posterior
mean is outlined in Section 8.5.2.
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Figure 8.3: Cumulative frequency of the mixing proportions ρθ′d . The plot shows that
more than half of the mixing proportions are smaller than 0.3, and more than 80 %
of the mixing proportions are smaller than 0.4. This indicates that ηd has stronger
influence to θ′d compared to µ1 .

In the TNTM, we expect the ρθ′d to be small since the miscellaneous topic distri-
bution µ1 is designed to capture topics that are not frequently used by authors. To
confirm this, we inspect the mixing proportion ρθ′d in each tweet d, and display their
empirical cumulative frequency plot in Figure 8.3. From this figure, we can see that
more than 80 % of the estimated ρθ′d are less than 0.4, indicating that the TNTM is
working as intended.

Next, we look at the mixing proportion ρθd , which is inversely related to the
influence of the θ′d to θd. In Figure 8.4, we similarly plot the empirical cumulative
frequency of the mixing proportions ρθd for each tweet d. Although the cumulative
frequency curve appears more linear, we can see that more than half of the mixing
proportions are greater than 0.6, which shows that θ′d does influence the θd to a
certain extent. This suggests that the hashtags is important in the topic modelling of
the words.

8.11 Summary

In this chapter, we propose the TNTM, which is a fully Bayesian nonparametric topic
model that jointly models tweets and the associated followers network information.
The TNTM employs a nonparametric Bayesian approach by using the PYP and the
GP, and achieves a flexible modelling by performing inference on a network of PYPs.
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Figure 8.4: Cumulative frequency of the mixing proportions ρθd . In contrast to Fig-
ure 8.3, more than half of the mixing proportions are greater than 0.6, and more
than 60 % of the mixing proportions are bigger than 0.5. This suggests that the topic
proportion for hashtags (θ′d) influences θd more than ηd .

Experiments with Twitter datasets show that the TNTM achieves significant improve-
ment compared to existing baselines. Furthermore, the ablation study demonstrates
the usefulness of each component in the TNTM. The TNTM also provides us addi-
tional dimensions to analyse the tweet corpora, for instance, using the hashtags as
topic labels during topic exploration, and understanding the authors better with the
assessment on the author–topic distributions.

Future work on this includes speeding up the posterior inference algorithm, espe-
cially for the network model. The MH algorithm requires a cubic time operation (due
to matrix operations) and thus does not scale to large network. Potential solutions to
this include employing approximation techniques such as by introducing inducing
variables [Hensman et al., 2013]. Other future studies would be to incorporate other
auxiliary information that is available in social media, such as location, hyperlinks and
multimedia contents. It is also interesting to apply the TNTM to other types of data
such as blog posts and news feed.



Chapter 9

Conclusion

In this dissertation, we have presented three novel topic models built on the hi-
erarchical Pitman-Yor process (HPYP) using the state-of-the-art Bayesian techniques.
These topic models were designed to tailor various text corpora, such as social media
messages and scientific papers, that are accompanied by different types of auxiliary
information (e.g., geographic location associated with the message, or the primary
author who has written the research paper).

9.1 Contributions

Although the proposed topic models are quite different, they share the same prin-
ciple of using the HPYP to pass information. This allows us to propose a single
framework, discussed in Chapter 5, to implement these topic models, where we
modularise the PYPs (and other variables) into blocks that can be combined to form
different models. Doing so enables significant time to be saved on implementation of
the topic models, and it produces a cleaner code. In Chapter 5, we presented a gen-
eral HPYP topic model, that can be seen as a generalisation to the HDP-LDA [Teh and
Jordan, 2010]. The HPYP topic model is represented using a Chinese Restaurant Pro-
cess (CRP) metaphor [Teh and Jordan, 2010; Blei et al., 2010; Chen et al., 2011], and we
discussed how the posterior likelihood of the HPYP topic model can be modularised.
We then detailed the learning algorithm for the topic model, taking advantage of the
CRP representation and the modularised form. We closed Chapter 5 with a technical
discussion on the implementation of the topic model.

As mentioned above, the proposed topic models look at text data with different
types of auxiliary information. Our first topic model, named the Twitter Opinion
Topic Model (TOTM), explores tweet corpora for sentiment analysis. The TOTM ex-
tracts sentiment indicators from tweets and uses external sentiment lexicon to this
end. Next, our proposed Citation Network Topic Model (CNTM) performs biblio-
graphic analysis on research publications. The CNTM makes use of the accompany-
ing metadata such as author details. In addition, the CNTM also models the citation
network between the publications. Lastly, we presented the Twitter Network Topic

135
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model (TNTM) as a fully Bayesian topic model on tweets. The TNTM models the
authors, text, hashtags, and the authors-follower network. Our experiments on these
different text corpora have suggested that incorporating more auxiliary information
into topic models leads to better fitting models, in addition to enabling more ways to
visualise the text corpora.

We will now review the proposed topic models in turn, starting with the TOTM
introduced in Chapter 6. For sentiment analysis, the TOTM leverages hashtags, men-
tions, emoticons, and strong sentiment words that are present in tweets. The novelty
of the TOTM lies in the modelling of the target-opinion interaction directly, allow-
ing the discovery of target-specific opinions and leading to additional dimensions
in visualising the tweet corpora. The TOTM also utilises sentiment lexicons to in-
corporate sentiment prior information into topic models. It employs a novel for-
mulation that learns and updates with the data. In the experiments, we achieved
improvement on model fitting and sentiment classification by using the TOTM over
some baselines. For instance, the TOTM is less perplexed by the opinion words in
the test set, compared to other models. On a tweet corpus consists of electronic
products, we presented additional dimensions to visualise the corpus. Example in-
cludes (1) inspecting the sentiment-induced opinions for the targets (products and
services), (2) comparing the opinions on brands and products, and (3) looking at the
contrastive opinions on certain products. All in all, using these auxiliary information
(with TOTM) have allowed us to extract valuable information from noisy platform
such as Twitter.

On the other hand, as discussed in Chapter 7, the CNTM is designed for the
research publication data for bibliographic analysis. Besides accompanying informa-
tion such as authors, the CNTM also considers the network between publications
through their citations. The novelty of this work comes from a novel and efficient
algorithm that allows the learning of the CNTM to mimic the learning algorithm of
a generic HPYP topic model mentioned in Chapter 5. This algorithm exploits the
posterior of the Poisson distributions and uses approximation to absorb the network
component into the topic model component. Furthermore, we proposed a method to
incorporate supervision into the CNTM, using the categorical labels of the publica-
tions. In the experiments, we showed that our proposed topic models achieve better
model fitting and better document clustering compared to two baselines. Moreover,
on three publication corpora extracted from CiteSeerX, the topical summary suggests
a good clustering of the publication data into various disciplines. The CNTM also al-
lows us to analyse the authors’ major research area and lets us visualise the network
of the authors through their topics.

Finally, the TNTM is presented in Chapter 8, which is designed for modelling
text content, hashtags, authors, and the followers network on tweets. In addition
to HPYP, the TNTM employs the Gaussian process (GP) for the network modelling.
The main usage of the TNTM is for content discovery on social networks, that is,
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generic topic modelling. Through experiments, we show that jointly modelling of the
text content and the network leads to better model fitting as compared to modelling
them separately. Additionally, we also demonstrated that the TNTM outperforms the
state-of-the-art tweet pooling method on document clustering and topic coherence.
Results on the qualitative analysis show that the learned topics and the authors’
topics are sound. Moreover, we found that the hashtags can serve as useful labels
for the topics. Note that in all the proposed models, we performed diagnostic checks
to assess the learning algorithms. We found that the learning algorithms converge
within 2,000 iterations and that the proposed Metropolis-Hastings (MH) algorithms
have relatively high acceptance probabilities.

We conclude that auxiliary information can serve as a valuable information to be
used in topic models. However, care must be taken to design the appropriate topic
models to make use of these information. In this dissertation, we had proposed three
topic models using the state-of-the-art Bayesian technologies for various types of text
data, which hopefully serve as a reference for future models. In the next section, we
outline several avenues for future work.

9.2 Future Research

As future work, it would be interesting to apply the proposed topic models on other
types of data. For instance, we can apply the TOTM directly to short reviews without
modifying the model.47 Similarly, we can apply the TNTM to other types of data,
such as blogs and news feed. Alternatively, we can also use the proposed models for
other applications that were not mentioned, such as hashtags recommendation and
content suggestion for new Twitter user. On Twitter, one interesting direction would
be to investigate the plausibility of constraining the tweets to have only one topic.

Another line of future studies involves extending the existing topic models to in-
corporate more auxiliary information in their modelling. To give some examples, we
can model the location of the tweets and the embedded multimedia contents such as
URL, images and videos. Another interesting kind of information would be the path
of a retweeted content.48 For research publications, additional auxiliary information
that can be important includes the time of publication, the publication type, and the
conference venue. It is also important to consider utilising more external resources
for topic modelling. For instance, besides the sentiment lexicon, we can also make
use of synonym and antonym lexicons for sentiment analysis. This also includes us-
ing external technologies for cleaning the data, such as applying spam filtering [Tsur
et al., 2010; McCord and Chuah, 2011] on tweets.

In topic modelling literature, models are usually designed for a particular type of

47For reviews that have explicit ratings, we can replace the emotion indicators in the TOTM by the
ratings, though extending the TOTM to model the ratings would also be possible.

48A Retweet is a reposting of someone else’s tweet.
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text corpus. However, it would be interesting to see topic models that are designed
for corpora with multiple types of text data. An important application would be to
extract political sentiment from various sources like social media, discussion forums
and published articles. Another interesting future research would be on combining
different kinds of topic models for a complete analysis. One implication of such
research would allow us to transfer the learned knowledge from a topic model to
another. The work on combining LDA has already been looked at by Schnober and
Gurevych [2015]. However, combining other kind of topic models, especially those
of nonparametric nature, is largely unexplored.

Last but not least, an important future investigation should be about speeding up
the learning algorithm for nonparametric Bayesian topic models by exploring more
efficient learning algorithm. Within the same Markov chain Monte Carlo (MCMC)
framework, it would be interesting to employ the reversible jump MCMC technique
[Green and Hastie, 2009], such as the split-merge MCMC sampler [Jain and Neal,
2004; Wang and Blei, 2012], to hasten the convergence time. Moreover, we can also
consider recent work [Li et al., 2014] that utilises the Metropolis-Hastings-Walker
sampler to speed up Bayesian inference. Alternatively, other approximate inference
techniques are also of interest. For example, employing the variational inference [Blei
and Jordan, 2006], the expectation propagation [Minka, 2001], and the expectation
maximisation algorithm [Dempster et al., 1977; Moon, 1996] might lead to a faster
learning algorithm.
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Appendix

A.1 Derivation of Gradient Ascent Algorithm for Hyperpa-
rameter Optimisation

We would like to optimise for the hyperparameter b by updating b to its maximum a
posteriori estimate.

The posterior distribution of b is given by

p(b | c) ∝ p(b)
1

∏
r=−1

|Vo |
∏
v=1

(
φ∗rv
)crv = p(b)

1

∏
r=−1

|Vo |
∏
v=1

(
(1 + b)Xrv

∑i(1 + b)Xri

)crv

, (A.1)

where crv is the number of times a word v is assigned to sentiment r, and p(b) is the
hyperprior of b. We assume a weak hyperprior for b:

b ∼ Gamma(1, 1) ,

p(b) ∝ e−b . (A.2)

Optimising for the posterior is the same as optimising for the log posterior:

l(b) := log p(b | c)

=
1

∑
r=−1

|Vo |
∑
v=1

crv log
(

(1 + b)Xrv

∑i(1 + b)Xri

)
+ log p(b) + constant

=
1

∑
r=−1

|Vo |
∑
v=1

crv

(
Xrv log(1 + b)− log

(
∑

i
(1 + b)Xri

))
+ log p(b) + constant .

(A.3)

139



140 Appendix

We derive the gradient of l(b), denoted as l′(b), as follows:

l′(b) =
dl(b)

db

=
1

∑
r=−1

|Vo |
∑
v=1

crv

(
Xrv
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|Vo |
∑
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=
1
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1
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Xrv −Eφ∗r [Xr]

)
+ ρ′(b) , (A.4)

where ρ′(b) is defined as the derivative of the log prior of b, d log p(b)
db , and Eφ∗r [Xr] is

the expected score of sentiment r under the probability distribution φ∗r :

Eφ∗r [Xr] = ∑
j

Xrj φ∗rj . (A.5)

In addition, we can also derive the second derivative l′′(b):

l′′(b) = −(1 + b)−2
1

∑
r=−1

|Vo |
∑
v=1

crv
(
Xrv + Vφ∗r [Xr]−Eφ∗r [Xr]

)
+ ρ′′(b) , (A.6)

where Vφ∗r [Xr] is the variance of Xr under φ∗r . The second derivative can be used
to verify that the optimal value obtained from the gradient ascent algorithm corre-
sponds to the maxima.

A.2 Delta Method Approximation

We employ the delta method to show that∫
f (θ) exp

(
− g(θ)

)
dθ ≈ exp

(
− g
(
θ̂
)) ∫

f (θ)dθ for small g
(
θ̂
)

, (A.7)

where θ̂ is the expected value according to a distribution proportional to f (θ), more
specifically, define p(θ) as the probability density of θ, we have

θ̂ = E[θ] =
∫

θ p(θ)dθ , f (θ) = constant× p(θ) . (A.8)

First we note that the Taylor expansion for a function h(θ) = exp
(
− g(θ)

)
at θ̂ is

h(θ) =
∞

∑
n=0

1
n!

(
h(n)

(
θ̂
))(

θ − θ̂
)n , (A.9)
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where h(n)
(
θ̂
)

denotes the n-th derivative of h(·) evaluated at θ̂:

h(n)
(
θ̂
)
=
(
− g′

(
θ̂
))n

h
(
θ̂
)

. (A.10)

Multiply Equation A.9 with f (θ) and integrating gives

∫
f (θ) h(θ)dθ =

∞

∑
n=0

1
n!

(
h(n)

(
θ̂
)) ∫

f (θ)
(
θ − θ̂

)n dθ

=
∞

∑
n=0

1
n!

(
− g′

(
θ̂
))n ∫

f (θ)
(
θ − θ̂

)n dθ . (A.11)

Since g
(
θ̂
)

is small, the term
(
−g′

(
θ̂
))n

becomes exponentially smaller as n increases.
Here we let

(
−g′

(
θ̂
))n ≈ 0 for n ≥ 2. Hence, continuing from Equation A.11:∫

f (θ) h(θ)dθ ≈ h(θ̂)
∫

f (θ)dθ +
(
− g′

(
θ̂
))

h
(
θ̂
) ∫

f (θ)
(
θ − θ̂

)
dθ︸ ︷︷ ︸

0

≈ h(θ̂)
∫

f (θ)dθ . (A.12)

A.3 Keywords for Querying CiteSeer Datasets

1. For ML dataset:
Machine Learning: machine learning, neural network, pattern recognition, indexing

term, support vector machine, learning algorithm, computer vision, face recognition, feature
extraction, image processing, high dimensionality, image segmentation, pattern classifica-
tion, real time, feature space, decision tree, principal component analysis, feature selection,
backpropagation, edge detection, object recognition, maximum likelihood, statistical learning
theory, supervised learning, reinforcement learning, radial basis function, support vector, em
algorithm, self organization, image analysis, hidden markov model, artificial neural network,
independent component analysis, genetic algorithm, statistical model, dimensional reduction,
indexation, unsupervised learning, gradient descent, large scale, maximum likelihood esti-
mate, statistical pattern recognition, cluster algorithm, markov random field, error rate, opti-
mization problem, satisfiability, high dimensional data, mobile robot, nearest neighbour, image
sequence, neural net, speech recognition, classification accuracy, diginal image processing,
factor analysis, wavelet transform, local minima, probability distribution, back propagation,
parameter estimation, probabilistic model, feature vector, face detection, objective function,
signal processing, degree of freedom, scene analysis, efficient algorithm, computer simulation,
facial expression, learning problem, machine vision, dynamic system, bayesian network, mu-
tual information, missing value, image database, character recognition, dynamic program,
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finite mixture model, linear discriminate analysis, image retrieval, incomplete data, kernel
method, image representation, computational complexity, texture feature, learning method,
prior knowledge, expectation maximization, cost function, multi layer perceptron, iterated
reweighted least square, data mining.

2. For M10 dataset:
Biology: enzyme, gene expression, amino acid, escherichia coli, transcription factor, nu-

cleotides, dna sequence, saccharomyces cerevisiae, plasma membrane, embryonics.
Computer Science: neural network, genetic algorithm, machine learning, information

retrieval, data mining, computer vision, artificial intelligent, optimization problem, support
vector machine, feature selection.

Social Science: developing country, higher education, decision making, health care,
high school, social capital, social science, public health, public policy, social support.

Financial Economics: stock returns, interest rate, stock market, stock price, exchange
rate, asset prices, capital market, financial market, option pricing, cash flow.

Material Science: microstructures, mechanical property, grain boundary, transmission
electron microscopy, composite material, materials science, titanium, silica, differential scan-
ning calorimetry, tensile properties.

Physics: magnetic field, quantum mechanics, field theory, black hole, kinetics, string
theory, elementary particles, quantum field theory, space time, star formation.

Petroleum Chemistry: fly ash, diesel fuel, methane, methyl ester, diesel engine, natural
gas, pulverised coal, crude oil, fluidised bed, activated carbon.

Industrial Engineering: power system, construction industry, induction motor, power
converter, control system, voltage source inverter, permanent magnet, digital signal processor,
sensorless control, field oriented control.

Archaeology: radiocarbon dating, iron age, bronze age, late pleistocene, middle stone
age, upper paleolithic, ancient dna, early holocene, human evolution, late holocene.

Agriculture: irrigation water, soil water, water stress, drip irrigation, grain yield, crop
yield, growing season, soil profile, soil salinity, crop production

3. For AvS dataset:
History: nineteeth century, cold war, south africa, foreign policy, civil war, world war ii,

latin america, western europe, vietnam, middle east.
Religion: social support, foster care, child welfare, human nature, early intervention,

gender difference, sexual abuse, young adult, self esteem, social services.
Physics: magnetic field, quantum mechanics, string theory, field theory, numerical sim-

ulation, black hole, thermodynamics, phase transition, electric field, gauge theory.
Chemistry: crystal structure, mass spectrometry, copper, aqueous solution, binding site,

hydrogen bond, oxidant stress, free radical, liquid chromatography, organic compound.
Biology: genetics, enzyme, gene expression, polymorphism, nucleotides, dna sequence,

saccharomyces cerevisiae, cell cycle, plasma membrane, embryonics.
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A.4 Recovering Word Counts from TF-IDF

The PubMed dataset [Sen et al., 2008] was preprocessed to TF-IDF (term frequency-
inverse document frequency) format, that is, the raw word count information is lost.
Here, we describe how we can recover the word count information, using a simple
and reasonable assumption — that the least occurring words in a document occur
only once.

We denote tdw as the TF-IDF for word w in document d, fdw as the corresponding
term frequency (TF), and iw as the inverse document frequency (IDF) for word w. Our
aim is to recover the word counts cdw given the TF-IDF. The TF-IDF is computed49 as

tdw = fdw × iw , fdw =
cdw

∑w cdw
, iw = log ∑d 1

∑d I(cdw > 0)
, (A.13)

where I(·) is the indicator function.
We note that I(cdw > 0) = I(tdw > 0) since the TF-IDF for a word w is positive if

and only if the corresponding word count is positive. This allows us to compute the
IDF iw easily from Equation A.13. We can then determine the TF:

fdw = tdw/iw

= tdw ×
(

log ∑d 1
∑d I(tdw > 0)

)−1

. (A.14)

Now we are left with computing cdw given the fdw , however, we can obtain in-
finitely many solutions since we can always multiply cdw by a constant and get the
same fdw . Luckily, since we are working with natural language, it is reasonable to as-
sume that the least occurring words in a document occur only once, mathematically,
this is given as

cdw = 1 for w = arg min
w

fdw . (A.15)

Thus we can work out the normaliser ∑w cdw and recover the word counts for all
words in all documents.

∑
w

cdw =
1

minw fdw
, cdw = fdw ×∑

w
cdw . (A.16)

49Note that there are multiple ways to define a TF-IDF in practice. The specific TF-IDF formula used
by the PubMed dataset was determined via trial-and-error and elimination.
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A.5 Exclusion Words to Detect Incorrect Authors

A list of words we use to filter out invalid authors during the preprocessing step:

society, university, universität, universitat, author, advisor, acknowledgement, video, mathe-
matik, abstract, industrial, review, example, department, information, enterprises, informatik,
laboratory, introduction, encyclopedia, algorithm, section, available

A.6 Integrating Out Probability Distributions

Here, we show how to integrate out probability distributions using the expectation
of a PYP:

p
(
wdn | zdn = k, φk

)
=
∫

φ′dk

p
(
wdn, φ′dk | zdn, φk

)
=
∫

φ′dk

p
(
wdn | zdn, φ′dk

)
p
(
φ′dk | φk

)
=
∫

φ′dk

φ′dkwdn
p
(
φ′dk | φk

)
= E

[
φ′dkwdn

∣∣ φk

]
= φkwdn , (A.17)

where E[·] denotes the expectation value. We note that the last step in Equation A.17
follows from the fact that the expected value of a PYP is the probability vector corre-
sponding to the base distribution of the PYP (when the base distribution is a proba-
bility distribution).
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